Способ определения дисбаланса масс полусферического резонатора твердотельного волнового гироскопа

Изобретение относится к производству твердотельных волновых гироскопов. Способ определения дисбаланса масс полусферического резонатора твердотельного волнового гироскопа дополнительно содержит этапы, на которых измеряют реакцию в опоре в месте крепления резонатора, а математическая обработка сигнала заключается в определении величины амплитуды и углового положения колебаний относительно датчиков возбуждения, рассчитанных по формуле

где a1 - амплитуда сигнала с первого пьезоэлектрического датчика;

а2 - амплитуда сигнала со второго пьезоэлектрического датчика;

а3 - амплитуда сигнала с третьего пьезоэлектрического датчика;

А - амплитуда колебаний;

где ϕ - угловое положение колебаний ножки относительно датчиков возбуждения.

Технический результат – повышение точности определения дефектов резонатора. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к производству твердотельных волновых гироскопов. При производстве резонатора твердотельного волнового гироскопа (ТВГ) из-за технологических дефектов появляются погрешности, которые приводят к расщеплению собственных частот резонатора, снижению добротности вследствие конструктивного демпфирования. Все эти дефекты отрицательно сказываются на точностных характеристиках прибора. Ряд дефектов устраняется балансировкой. В ходе балансировки влияние дефектов компенсируется путем удаления небольшого количества вещества из определенных мест полусферического резонатора.

Известен способ балансировки полусферического резонатора волнового твердотельного гироскопа и устройство для его осуществления (RU 2147117, публ. 27.03.2000 г.), включающий закрепление резонатора за ножку, установку датчиков возбуждения и измерения и удаление неуравновешенной массы. Пьезоэлектрический датчик устанавливают на свободном конце ножки резонатора для измерения его перемещения, возбуждают колебания резонатора, измеряют напряжение пьезоэлектрического датчика для различных ориентаций стоячей волны в резонаторе, рассчитывают неуравновешенную массу путем математической обработки полученных экспериментальных данных и удаляют неуравновешенную массу с поверхности полусферической оболочки резонатора.

Недостатком известного способа является отсутствие возможности регистрировать реакцию в опоре крепления и определять момент сил, позволяющий проводить балансировку по всей поверхности полусферы. Так же из-за ограниченного количества измерительных датчиков ограничивается точность измерений.

Задачей заявляемого способа является повышение точности определения дефектов резонатора.

Указанный технический результат достигается тем, что способ определения дисбаланса масс полусферического резонатора твердотельного волнового гироскопа включает закрепление резонатора за ножку, установку датчиков возбуждения и измерения, возбуждение колебаний резонатора, регистрацию сигналов с датчиков для различных ориентации стоячей волны в резонаторе, расчет неуравновешенной массы путем математической обработки полученных экспериментальных данных для дальнейшей балансировки резонатора, при этом дополнительно измеряют реакцию в опоре в месте крепления резонатора.

В месте крепления резонатора устанавливают, по крайней мере, один дискретный измерительный датчик, а также измерительные датчики устанавливают на свободном конце ножки со стороны внешней полусферы.

Дискретный контакт в месте крепления ножки резонатора позволяет ввести в зону сопряжения датчики, число которых три или более, и провести более точные измерения перемещений во время возбуждения резонатора для различных ориентаций стоячей волны. Большее число датчиков позволяет провести более точную обработку полученных сигналов и повысить точность балансировки путем удаления неуравновешенной массы с поверхности полусферической оболочки резонатора.

Устройство для определения дисбаланса масс полусферического резонатора ТВГ поясняется рисунком и содержит резонатор 1, датчики возбуждения 2, опору для установки ножки резонатора (цанговый зажим) 3, датчики измерения 4. Датчики 4 установлены как в месте крепления резонатора, так и на свободном конце ножки резонатора.

Дополнительные датчики позволяют измерять реакцию в опоре крепления резонатора для определения потери энергии колебаний резонатора в месте крепления. Число дискретных датчиков превышает число возможных уравнений равновесия, больше трех, что путем пересчета позволяет получить более точный результат о дисбалансе.

Как частный случай можно выбрать три пьезоэлектрических датчика, расположенных в месте зажима резонатора. Датчики должны располагаться на равном удалении и под равным углом друг относительно друга.

Способ для определения дисбаланса масс полусферического резонатора ТВГ реализуют следующим образом.

Закрепляют резонатор 1 за ножку в месте зажима 3 с датчиками измерения 4, устанавливают датчики возбуждения 2. Датчики измерения 4 устанавливают в месте зажима для измерения реакций в опоре и на свободном конце ножки резонатора 1. Возбуждают колебания резонатора 1, регистрируют сигналы с датчиков 4 для различных ориентаций стоячей волны в резонаторе. Рассчитывают неуравновешенные массы путем математической обработки полученных экспериментальных данных для дальнейшей балансировки резонатора.

Математическая обработка сигнала заключается в определении величины амплитуды и углового положения колебаний относительно датчиков возбуждения

, где

a1 - амплитуда сигнала с первого пьезоэлектрического датчика;

а2 - амплитуда сигнала со второго пьезоэлектрического датчика;

а3 - амплитуда сигнала с третьего пьезоэлектрического датчика;

А - амплитуда колебаний.

, где

ϕ - угловое положение колебаний ножки относительно датчиков возбуждения.

Способ позволяет проводить измерение одновременно несколькими датчиками, определять колебания всей ножки, как в горизонтальном, так и в вертикальном направлении, рассчитывать момент колебаний ножки для определения расположения дефекта масс не только на кромке резонатора, но и на всей полусфере. Наличие нескольких измерительных датчиков позволяет получить более точную информацию о дисбалансе.

Способ позволяет определять момент действующих сил [1], что позволяет определить не только угловое положение дефекта на кромке резонатора, но и определять расположение дефекта по всей поверхности полусферы резонатора.

Данный способ позволяет проводить измерение реакций непосредственно в опоре закрепления. Использование датчиков на наружной ножке резонатора дополняет информацию о колебательной картине резонатора.

1. Жбанов Ю.К., Каленова Н.В. «Поверхностный дебаланс волнового твердотельного гироскопа» // Изв. РАН. МТТ. 2001. №3. С. 11-18.

1. Способ определения дисбаланса масс полусферического резонатора твердотельного волнового гироскопа, включающий закрепление резонатора за ножку, установку датчиков возбуждения и измерения, возбуждение колебаний резонатора, регистрацию сигналов с датчиков для различных ориентаций стоячей волны в резонаторе, расчет неуравновешенной массы путем математической обработки полученных экспериментальных данных для дальнейшей балансировки резонатора, отличающийся тем, что дополнительно измеряют реакцию в опоре в месте крепления резонатора, а математическая обработка сигнала заключается в определении величины амплитуды и углового положения колебаний относительно датчиков возбуждения, рассчитанных по формуле

где a1 - амплитуда сигнала с первого пьезоэлектрического датчика;

а2 - амплитуда сигнала со второго пьезоэлектрического датчика;

а3 - амплитуда сигнала с третьего пьезоэлектрического датчика;

А - амплитуда колебаний;

где ϕ - угловое положение колебаний ножки относительно датчиков возбуждения.

2. Способ по п. 1, отличающийся тем, что измерительные датчики устанавливают на свободном конце ножки со стороны внешней полусферы.

3. Способ по п. 1, отличающийся тем, что определяют момент действующих сил, позволяющий определить не только угловое положение дефекта на кромке резонатора, но и определять расположение дефекта по всей поверхности полусферы резонатора.



 

Похожие патенты:

Изобретение относится к области измерительной техники, а именно к устройствам для измерения угловой скорости. Сущность: формируют пучок когерентного оптического излучения с управляемой частотой излучения.

Способ определения давления в кольцевых лазерных гироскопах заключается в том, что в кольцевом лазерном гироскопе с гелий-неоновой смесью кратковременно возбуждают электрический разряд, устанавливают рабочий ток и регистрируют спектр излучения в диапазоне длин волн от 500 нм до 600 нм, определяют интенсивности линий неона 585,2 нм и гелия 587,5 нм, рассчитывают отношение интенсивности линии неона 585,2 нм к интенсивности линии гелия 587,5 нм и определяют давление гелий-неоновой смеси кольцевого лазерного гироскопа по калибровочному графику.

Группа изобретений относится к способу калибровки вибрационного гироскопа. Способ калибровки вибрационного гироскопа содержит этапы, на которых осуществляют возбуждение вибрации вдоль оси возбуждения резонансной структуры, при этом ось возбуждения позиционируется в первой угловой позиции, считывание вибрации резонансной структуры на первой оси считывания резонансной структуры в то время, когда ось возбуждения позиционируется в первой угловой позиции, формирование первого сигнала считывания, указывающего считываемую вибрацию резонансной структуры на первой оси считывания, непрерывное вращение оси возбуждения вокруг резонансной структуры во вторую угловую позицию, считывание вибрации резонансной структуры на второй оси считывания резонансной структуры в то время, когда ось возбуждения позиционируется во второй угловой позиции, формирование второго сигнала считывания, указывающего считываемую вибрацию резонансной структуры на второй оси считывания, и суммирование первого сигнала считывания со вторым сигналом считывания, чтобы извлекать смещение гироскопа.

Изобретение относится к гироскопам вибрационного типа, в частности к микромеханическим гироскопам, которые предназначены для измерения угловой скорости движения основания.

Изобретение относится к области измерительной техники и микросистемной техники, а именно к интегральным измерительным элементам величины угловой скорости. Сущность изобретения заключается в том, что чувствительный элемент микроэлектромеханического датчика угловой скорости содержит основание, гребенчатую систему возбуждения и измерения колебаний, инерционную массу, выполненную в виде платы со сквозным отверстием, расположенную с зазором относительно основания и связанную с ним через систему упругих подвесов, при этом сквозное отверстие выполнено в центре инерционной массы, внутри сквозного отверстия расположены система упругих подвесов и гребенчатые системы возбуждения и измерения колебаний, подвижные электроды которых установлены на подвесах, одни из которых зафиксированы на основании, а другие - на инерционной массе.

Группа изобретений относится к точному приборостроению и может быть использована для обследования нефтяных и газовых скважин. Сущность изобретений заключается в том, что осуществляют формирование управляющего воздействия на гироскоп по стабилизированной оси, компенсирующее дрейф одноосного гиростабилизатора, формирование управляющего воздействия на гироскоп по стабилизированной оси для сохранения положения вектора кинетического момента в плоскости горизонта с последующим определением углов поворота.

Изобретение относится к области навигационной техники и касается устройства для ориентирования подвижных объектов. Устройство для ориентирования подвижных объектов содержит замкнутый неметаллический корпус, в котором размещено симметричное твердое тело без точки подвеса, помещенное в объем, заполненный воздухом, с возможностью одновременно совершать перемещения вдоль вертикали места и в направлении Восток-Запад.

Система управления объектом в пространстве содержит не менее двух устройств управления и стабилизации объекта в пространстве. Устройство управления и стабилизации объекта в пространстве содержит два вращающихся элемента с одинаковыми массовыми моментами инерции и вращающимися в разные стороны и устройство их крепления.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения линейной скорости на поверхности или внутри движущихся макрообъектов.

Изобретение относится к области навигационного приборостроения и может найти применение в системах автоматического управления, например, летательными аппаратами.

Изобретение относится к электромеханическим устройствам и может быть использовано для преобразования энергии колебания морских волн в электроэнергию. Сущность изобретения заключается в том, что гироскопический преобразователь энергии морских волн обеспечивает самоустановку гироскопов перед раскруткой и возможность активной адаптации к изменяющейся интенсивности волнения водной поверхности. Технический результат – расширение функциональных возможностей гироскопического преобразователя. 2 ил.

Изобретение относится к производству твердотельных волновых гироскопов. Способ определения дисбаланса масс полусферического резонатора твердотельного волнового гироскопа дополнительно содержит этапы, на которых измеряют реакцию в опоре в месте крепления резонатора, а математическая обработка сигнала заключается в определении величины амплитуды и углового положения колебаний относительно датчиков возбуждения, рассчитанных по формуле где a1 - амплитуда сигнала с первого пьезоэлектрического датчика;а2 - амплитуда сигнала со второго пьезоэлектрического датчика;а3 - амплитуда сигнала с третьего пьезоэлектрического датчика;А - амплитуда колебаний; где ϕ - угловое положение колебаний ножки относительно датчиков возбуждения.Технический результат – повышение точности определения дефектов резонатора. 2 з.п. ф-лы, 1 ил.

Наверх