Способ получения нитрида углерода, обладающего аномально высоким уровнем флуоресценции под действием лазерного излучения видимого диапазона

Изобретение относится к неорганической химии и может быть использовано в фотокатализе, литий-ионных аккумуляторах, медицинских зондах. Меламин разлагают в закрытом кварцевом реакторе в азотсодержащей атмосфере при 275-295 оС в течение 4,5-6 ч. Получают графитоподобный g-C3N4, имеющий молярное отношение углерода к азоту 3:4, обладающий высоким уровнем флуоресценции под действием лазерного излучения видимого диапазона. Способ прост и экономичен. 1 ил., 3 пр.

 

Изобретение относится к методу синтеза нитрида углерода, обладающего флуоресцентными свойствами и может использоваться в различных областях науки и техники: для фотокатализа, повышения емкости литий-ионных аккумуляторов, а также в медицине, например, в качестве зондов.

Известен способ получения нитрида углерода на основе термического разложения роданида щелочного металла в вакуумированной герметизированной камере [патент РФ №2288170 от 16.02.2005].

Недостатком указанного способа является необходимость специального реактора, что приводит к удорожанию конечного продукта, а также сопутствующее образование побочных продуктов, удаление которых увеличивает многостадийность процесса. Конечный продукт не обладает способностью к флуоресценции в видимом диапазоне.

Наиболее близким техническим решением является способ представленным в статье [Yuanhao Zhang, Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine, 2013]. Меламин размещают в кварцевый реактор, который непрерывно продувается азотом, и выдерживают при температуре 300-650 градусов 2-4 ч.

Недостатками существующего способа являются малый выход целевого продукта, слишком широкий диапазон температур и недостаточное время выдержки.

Техническим результатом заявленного изобретения является возможность обеспечение 80-90% выхода целевого продукта (нитрида углерода), обладающего аномальными показателями флуоресценции в видимом диапазоне под действием лазерного излучения.

Данный технический результат достигается за счет того, что при осуществлении способа получения нитрида углерода, обладающего аномально высоким уровнем флуоресценции под действием лазерного излучения видимого диапазона, путем термического разложения меламина разложение меламина осуществляется в закрытом кварцевом реакторе в азотсодержащей атмосфере, в интервале температур 275-295 градусов в течение 4,5-6 ч и последующим охлаждением при комнатной температуре.

Технический результат в отличие от известного технического решения достигается тем, что выбирается более узкий температурный диапазон и увеличивается время пребывания в реакторе и последующее быстрое охлаждение при комнатной температуре. Основным элементом предложенного технического решения является узкий температурный диапазон синтеза, который дает аномальную интенсивность флюоресценции.

Преимуществами данного способа являются: более простая установка, которая не предполагает вакуумирования и продувки, более низкая температура, отсутствие вредных выделений.

Изобретение относится к методу синтеза. Изобретение относится к легкому и экономически целесообразному способу получения графитоподобного g-C3N4, имеющего молярное отношение углерода к азоту 3:4, путем элиминирования меламина (1, 3, 5-триазин-2, 4, 6-триамин) при высокой температуре: от молекулы меламина отщепляются атомные группы NH3 без замены их другими. В результате на поверхности оксидной подложки формируется однородная, механически прочная, электропроводящая полимерная пленка, селективная по отношению к парам воды, обеспечивающая возможность определения содержания влаги в воздухе.

Полученные материалы из нитрида углерода обладают исключительными флуоресцентными свойствами и имеют широкое применение.

Изобретение иллюстрируется следующими примерами.

Пример 1

Навеску меламина перетирали в агатовой ступки в течении 30 минут. После перетертая навеска размещалась в кварцевый реактор. Кварцевый реактор переносился в разогретую до 250°С печь и выдерживался там в течение 6 часов.

Пример 2

Все технологические условия получения нитрида углерода совпадают с приведенными в примере 1, за исключением температуры в печи. Температура в реакторе-295°С.

Пример 3

Все технологические условия получения нитрида углерода совпадают с приведенными в примере 1, за исключением температуры в печи. Температура в реакторе-350°С.

На Фиг. 1 показаны спектры флюоресценции образцов представленных примеров.

Образцы, выдержанные при различной температуре, различаются флюоресценцией разной интенсивности и выходом целевого продукта. Так образец, полученный в примере 2, обладает наибольшей интенсивно флюоресценции и максимальным выходом.

Способ получения нитрида углерода, обладающего аномально высоким уровнем флуоресценции под действием лазерного излучения видимого диапазона, путем термического разложения меламина, отличающийся тем, что разложение меламина осуществляется в закрытом кварцевом реакторе в азотсодержащей атмосфере в интервале температур 275-295 градусов в течение 4,5-6 ч c последующим охлаждением при комнатной температуре.



 

Похожие патенты:
Изобретение может быть использовано при изготовлении суперконденсаторов, сенсорных материалов, адсорбентов, носителей для катализаторов. Готовят смесь, содержащую 50-100 масс.

Изобретение относится к области неорганической химии и может быть использовано при создании композиционных твердых ракетных топлив (ТРТ), окислителя жидких ракетных топлив.

Изобретение относится к способу получения соединений переходных металлов общего состава MeaCbNcHd, где Me - переходный металл или смесь переходных металлов, a=1-4, b=6-9, c=8-14, d=0-8.

Изобретение может быть использовано в химии азотсодержащих соединений и для синтеза лекарственных препаратов и красителей. Способ очистки дицианамида натрия-сырца включает обработку продукта, содержащего в качестве основной примеси цианат натрия, водным раствором хлорида аммония в эквимольном количестве.

Изобретение относится к технологии получения материала из нитрида углерода, который может быть использован в качестве износостойких и противокоррозионных покрытий, а также в составе различных композиционных материалов.
Изобретение относится к области химии и может быть использовано для синтеза кристаллического нитрида углерода C 3N4. .
Изобретение относится к области химии. .
Изобретение относится к разработке способа получения сиалоновых фаз, в частности -сиалона, которые могут быть использованы в качестве керамических материалов в различных областях науки и техники.

Изобретение раскрывает способ получения фунгицида с действующим веществом на основе аддуктов фуллерена и производных бензимидазола, включающий реакцию взаимодействия фуллеренов фракции С50-С92 и производных бензимидазола, в качестве которого рассматривается N-[1-(бутилкарбомоил)-бензоимидазолил-2]-0-метилкарбомат.

Изобретение может быть использовано в химической промышленности. Пентоксид ванадия промышленной категории превращают в окситрихлорид ванадия низкотемпературным хлорированием в псевдоожиженном слое.
Изобретение может быть использовано при изготовлении суперконденсаторов, сенсорных материалов, адсорбентов, носителей для катализаторов. Готовят смесь, содержащую 50-100 масс.

Изобретение относится к физике низкотемпературной плазмы и плазмохимии, к электротехнике и электрофизике, а именно к ускорительной технике. Способ синтеза нанодисперсного нитрида титана осуществляют путем распыления электроразрядной плазмы титана коаксиального магнитоплазменного ускорителя с титановыми электродами в камеру-реактор, заполненную газообразным азотом при атмосферном давлении, при этом синтез ведут в камере-реакторе объемом от 0,022 м3 до 0,055 м3 и от 0,057 м3 до 0,098 м3 при температуре от 0°C до 19°C и от 21°C до 40°C соответственно.

Заявляемая группа технических решений относится к области мембранного газоразделения. Способ мембранного газоразделения, включающий сжатие исходной газовой смеси в ступенях компрессора, подачу газа из промежуточной ступени сжатия в газоразделительное устройство с мембранными элементами, разделение потока газовой смеси на пермеат и ретентат, повышение давление пермеата, покинувшего газоразделительное устройство и подачу пермеата в промежуточную ступень сжатия, предшествующую газоразделительному устройству, при этом давление пермеата повышают первым запорно-регулирующим устройством, часть пермеата, покинувшего газоразделительное устройство, отводят через второе запорно-регулирующее устройство, часть ретентата после газоразделения подают на вход газоразделительного устройства.

Изобретение относится к области синтеза солей гидроксиламина, в частности нитрата гидроксиламина, концентрированные водные растворы которого являются энергичными окислителями и составляют основу ряда топлив.

Изобретение относится к установке для разделения изотопов методом фракционной перегонки. Установка содержит многоканальную ректификационную колонну 1, выполненную в виде каскада последовательно расположенных в вертикальном направлении модулей 11 с параллельно расположенными трубками 2, образующими рабочие каналы с насадкой 12, верхний буфер 3 и нижний буфер 4, конденсатор 7, испаритель 8 и дозирующее устройство 5 с раздаточными трубками 6, соединенными с рабочими каналами.
Изобретение может быть использовано при получении магнитотвердых материалов, используемых в электротехнике и машиностроении. Способ получения магнитотвердого материала Sm2Fe17Nx включает смешивание порошков Sm и Fe, их механоактивацию и последующее азотирование.

Изобретение относится к системам генерирования инертной газовой среды с высоким содержанием азота. .
Наверх