Способ термической обработки заготовки или изделия (пружин) из бронзы брнхк 2,5-0,7-0,6

Изобретение относится к металлургии, в частности к упрочняющей термической обработке дисперсионно-упрочняемых бронз. Способ термической обработки изделий из бронзы БрНХК 2,5-0,7-0,6, подвергнутой термодеформационной обработке, включает аэротермоакустическую обработку, которая заключается в нагреве заготовки изделия перед старением до температуры 150-170°С, выдержке 10 мин и охлаждении в резонаторе газоструйного генератора звука при одновременном воздействии потока газа и акустического поля звукового диапазона частот с уровнем звукового давления в пределах 140-160 дБ в течение 10-12 мин. Последующее старение проводят при температуре 440°С с выдержкой 2,5 часа и охлаждением на воздухе. После старения осуществляют дважды упомянутую аэротермоакустическую обработку. Повышаются механические свойства бронзы БрНХК 2,5-0,7-0,6, что позволяет использовать ее в качестве материала для пружин. 1 табл.

 

Заявляемое изобретение относится к металлургии, в частности к упрочняющей термической обработке дисперсионно-упрочняемых бронз.

Основное свойство, которым должны обладать материалы для пружин - высокое сопротивление малым пластическим деформациям в условиях кратковременного (предел упругости) и длительного (релаксационная стойкость) нагружения. Эти свойства зависят от состава и структуры материалов и могут быть получены, в том числе, и у дисперсионно-твердеющих сплавов. Рост сопротивления малым пластическим деформациям у этих сплавов связан с изменением субструктуры матрицы и с блокирующим действием частиц избыточной фазы.

Известен способ получения проволоки из Бр НХК с необходимым комплексом свойств для сварочных электродов при комнатной температуре: прочность (σв=800МПа, σ0,2=780МПа), пластичность (δ=10%). Эти свойства можно получить в деформированном сплаве, используя оптимальное старение (450 С - 2 ч). Этот способ принят в качестве ближайшего аналога. Описание способа приводится в публикации О.Е. Осинцев, В.Н. Федоров. Медь и медные сплавы. Отечественные и зарубежные марки. Справочник. М. Машиностроение. С. 336. (с. 298-300).

Основным недостатком способа, принятого в качестве ближайшего аналога, является то, что способ обеспечивает недостаточный уровень значений σ0,2 и σ0,005 для использования его в качестве материала для пружин, а также пластичности, что может привести к разрушению материала при навивке пружины.

Перед заявляемым изобретением поставлена задача - повысить значения прочности, условных пределов упругости, текучести и пластичности.

Поставленная задача решается за счет того, что в способе термической обработки изделий из деформируемого сплава Бр НХК пруток подвергают аэротермоакустичской обработке, заключающейся в нагреве до 150-170°С и выдержке в течение 10-15 мин., с последующим охлаждением в течение 10 мин. в резонаторе газоструйного генератора звука при одновременном воздействие потока воздуха и акустического поля с уровнем звукового давления 140-160 дБ. Старение проводится при температуре 440°С, с выдержкой 2,5 ч. и охлаждением на воздухе. После старения для образцов, прошедших перед старением аэротермоакустичскую обработку осуществлялась двухкратная аэротермоакустическая обработка.

В качестве примера для оценки заявляемого способа термической обработки использовались прутки диаметром 3 мм из сплава Бр НХК 2,5-0,7-0,6, полученные с применением термической обработки и пластической деформации. Образцы длиной 200 мм испытывались на статическое растяжение на машине модели AGX-100kN, SHIMADZU.

Заготовки образцов из деформированного сплава подвергались обработке путем нагрева до температуры 150-170°С, выдержке 10 мин., а охлаждение части образцов проводилось в резонаторе газоструйного генератора звука при одновременном воздействии потока газа и акустического поля звукового диапазона частот с уровнем звукового давления в пределах 140-160 дб в течении 10-12 мин., а других образцов на воздухе; последующее старение всех образцов проводилось при температуре 440°С, выдержка 2,5 ч. с охлаждением на воздухе; после старения для образцов, прошедших перед старением аэротермоакустическую обработку, осуществлялась двухкратная аэротермоакустическая обработка. Результаты механических испытаний приведены в таблице.

* - режим аэротермоакустической обработки (АТАО1)-нагрев 150-170°С, выдержка 10-12 мин., охлаждение в резонаторе газоструйного генератора звука 10 мин. при воздействие потока воздуха и акустического поля с уровнем звукового давления 140-160 дБ в течение 10 мин.

Из приведенных в таблице механических свойств видно, что применение АТАО по режиму ATAO1 прутков БрНХК, старению и последующей 2-х кратной ATAO1 после старения, позволяет повысить как характеристики прочности, так и пластичность сплава.

Благодаря одновременному воздействию на заготовку потока газа и акустического поля достигается технический результат, а именно: измельчаются зерна твердого раствора, в том числе и за счет частично прошедших процессов рекристаллизации, что возможно в случае металлов и сплавов с низкой энергией дефектов упаковки, к которым относится медь. После АТАО больше степень дисперсности интерметаллидных фаз, выделившихся как при кристаллизации, так и при старении, более равномерно идет распад твердого раствора, в том числе и по границам зерен, что обеспечивает повышение характеристик прочности и упругости бронзы. Повышение пластичности бронзы предотвращает опасность появления дефектов при изготовлении упругих элементов изделий.

Способ термической обработки изделий из бронзы БрНХК 2,5-0,7-0,6, подвергнутой термодеформационной обработке, отличающийся тем, что заготовку изделия перед старением подвергают нагреву до температуры 150-170°С, выдержке 10 мин и охлаждению в резонаторе газоструйного генератора звука при одновременном воздействии потока газа и акустического поля звукового диапазона частот с уровнем звукового давления в пределах 140-160 дБ в течение 10-12 мин, а последующее старение проводят при температуре 440°С с выдержкой 2,5 часа и охлаждением на воздухе, при этом после старения осуществляют дважды упомянутую аэротермоакустическую обработку.



 

Похожие патенты:

Изобретение относится к способам упрочнения и модификации поверхности, а именно лазерного упрочнения, и может быть использовано для повышения стойкости деталей из титановых сплавов.

Изобретение относится к электропластической формообразующей обработке титан-никелевых сплавов для повышения их деформационной способности и эффекта памяти формы и может быть использовано в металлургии и машиностроении.

Изобретение относится к цветной металлургии, в частности к способам обработки алюминиево-кремниевых сплавов (силуминов). Способ модифицирования силумина включает облучение интенсивным импульсным электронным пучком силумина марки АК12 с энергией электронов 18 кэВ, частотой следования импульсов ƒ=0,3 Гц, длительностью импульса пучка электронов τ=50-150 мкс, плотностью энергии пучка электронов ES=10-25 Дж/см2 и количеством импульсов воздействия n=1-5, при этом облучение проводят на лицевой поверхности образца, расположенной над надрезом, имитирующим трещину, в среде аргона при остаточном давлении 0,02 Па.

Изобретение относится к области пластической обработки металлов, таких как алюминий и его сплавы, и может быть использовано в различных областях промышленности и науки для глубокого формования металлических материалов.

Изобретение относится к области металлургии, а именно к способам создания острой кубической текстуры в железоникелевых сплавах, и может быть использовано для создания магнитопроводов в электротехнических устройствах, а также в качестве лент-подложек при получении многослойных ленточных сверхпроводников второго поколения.

Изобретение относится к деформационнотермической обработке сплава TiNiTa с эффектом памяти формы и может быть использовано в медицине при изготовлении стентов. Способ получения наноструктурной проволоки из сплава титан-никель-тантал с эффектом памяти формы включает термомеханическую обработку заготовки, сочетающую интенсивную пластическую деформацию и дорекристаллизационный отжиг.
Изобретение относится к способу получения пористого металлического тела из алюминиевого сплава, включающему постепенную плавку части пластины из алюминиевого сплава под воздействием источника тепла с использованием водорода в качестве порообразующего газа и постепенное отверждение металла.

Изобретение относится к способу изготовления алюминиевой фольги, а также алюминиевой фольге, снабженной интегрированными защитными элементами, и может быть использовано для упаковки медицинской продукции для защиты ее от подделки.

Изобретение относится к получению метаматериалов из структурных элементов на основе полупроводников, диэлектриков и металлов и может быть использовано в машиностроении и электронике в качестве материалов с улучшенными свойствами.

Изобретение относится к металлургии, в частности к термической обработке титановых сплавов. Способ термической обработки изделия из деформируемого сплава ВТ23 характеризуется тем, что изделие нагревают до 850°С, выдерживают 1 ч, охлаждают в воде и подвергают старению при температуре 550°С в течение 10 ч.

Изобретение относится к металлургии, в частности к титаново-медным материалам для электронных компонентов. Может использоваться, например, в соединителях, зажимах аккумуляторов, штепселях, реле, переключателях, модулях видеокамеры.

Изобретение относится к металлургии, в частности к титаново-медным материалам для электронных компонентов. Может использоваться, например, в соединителях, зажимах аккумуляторов, штепселях, реле, переключателях, модулях видеокамеры.

Изобретение относится к спинодальным сплавам медь-никель-олово. Сплав включает в себя от примерно 14,5 до примерно 15,5 мас.% никеля, от примерно 7,5 мас.% до примерно 8,5 мас.% олова и остаток - медь.

Изобретение относится к области металлургии, в частности к обработке медных сплавов, предназначенных для контактной сети высокоскоростного железнодорожного транспорта.

Группа изобретений относится к трубе из сплава меди и способу ее производства. Труба подвергнута волочению и сделана из сплава CuCrZr, который подавляет ухудшение механической прочности и, в частности, укрупнение зерен кристаллов даже в температурной зоне солютионизирующей обработки.

Изобретение относится к способам изготовления электроконтактного провода из термоупрочняемого сплава на основе меди. Способ включает подачу сплава в кристаллизатор, кристаллизацию сплава в виде непрерывнолитой заготовки, деформацию упомянутой заготовки на катанку, закалку, старение при 400-500°С, формирование электроконтактного провода.

Изобретение относится к совместимому со смазочным материалом медному сплаву, используемому для производства компонентов зубчатой передачи, в частности колец синхронизатора.

Изобретение относится к области металлургии и машиностроения, в частности к процессам непрерывной термообработки металлического плоского проката, в частности лент и полос.

Изобретение относится к ультравысокопрочным деформируемым сплавам медь-никель-олово. Способ термомеханической обработки деформируемого спинодального сплава медь-никель-олово включает выполнение этапа первой холодной обработки давлением сплава со степенью холодной деформации от 50% до 75% и термическую обработку упомянутого сплава при температуре от 740°F до 850°F в течение периода от 3 минут до 14 минут с обеспечением условного предела текучести сплава по меньшей мере 175 тысяч фунтов на кв.

Изобретение относится к способам термомеханической обработки спинодальных сплавов медь-никель-олово, улучшающих их формуемость. Способ термомеханической обработки литого деформируемого спинодального сплава медь-никель-олово с условным пределом текучести по меньшей мере 115 тысяч фунтов на кв.
Наверх