Пульсирующий кумулятивный ракетный двигатель

Пульсирующий кумулятивный ракетный двигатель содержит камеру сгорания, сопловой блок, канал подачи кислорода и канал подачи водорода, камеру распределения кислорода, камеру распределения водорода, камеру вихревой закрутки кислорода, камеру вихревой закрутки водорода. Кислород из камеры вихревой закрутки кислорода поступает в камеру сгорания по коническому каналу, который соединяет камеру вихревой закрутки кислорода и камеру сгорания. Водород из камеры вихревой закрутки водорода поступает в камеру сгорания по своему коническому каналу, который соединяет камеру вихревой закрутки водорода и камеру сгорания. При вхождении потока кислорода и потока водорода в камеру сгорания происходит смешивание кислорода и водорода с образованием горючей смеси, которая, двигаясь по спирали, заполняет камеру сгорания, образуя при этом воронку, ось симметрии воронки совпадает с осью симметрии камеры сгорания. В днище камеры сгорания выполнена запальная камера, в которой создаются условия для возникновения детонационной волны при воспламенении горючей смеси от запальной свечи. Изобретение направлено на упрощение конструкции и повышение удельного импульса. 3 ил.

 

Заявляемое изобретение относится к ракетной технике, и основано на применении в ракетном двигателе пульсирующей кумулятивной струи, далее такой двигатель будет обозначаться - ПКРД, и может применятся как в маршевых, так и в управляющих ракетных двигателях.

Известен патент №2183283 «Маршевый пульсирующий ракетный двигатель», содержащий блок камер сгорания, каждая из которых имеет форсунки для подачи топлива, и сопло Лаваля, отличающийся тем, что двигатель выполнен работающим на самовоспламеняющемся топливе, а блок камер сгорания, имеющий возможность выдерживать давление до 1000 атм., выполнен в виде единой конструкции, состоящей из двух плит, формирующих камеры сгорания с соплами и скрепленных между собой через жаропрочную прокладку болтовыми соединениями, и имеющий возможность накапливать избыточное тепло, камеры сгорания выполнены шарообразными, в них установлены форсунки для подачи топлива, при этом форсунки связаны с установленными на верхней плите блока электронными инжекторными агрегатами, в нижней плите расположены сопла Лаваля каждой камеры, две противоположно расположенные камеры имеют тангенциальные сопла, позволяющие управлять положением двигателя по крену, причем площадь внутренней поверхности камеры сгорания в 500 раз превышает площадь критического сечения сопла.

Недостатком данной конструкции является сложность управления процессом впуска и полного заполнения камер сгорания самовоспламеняющимся топливом до начала воспламенения.

Известен патент №2442008 «Импульсный детонационный ракетный двигатель», содержит камеру сгорания, вход которой служит для порционного ввода детонационного топлива, систему импульсного зажигания и устройство запирания выходного отверстия камеры сгорания в момент заполнения ее порцией детонационного топлива, тяговое осесимметричное сопло и устройство запирания. Тяговое осесимметричное сопло установлено на выходе камеры сгорания и содержит канал в виде сопла Лаваля, сужающееся и быстро расширяющееся в направлении истечения продуктов детонации. Устройством запирания является роторный клапан, расположенный в критическом сечении сопла и выполненный в виде приводного цилиндрического тела с осью вращения, проходящей через критическое сечение тягового сопла и перпендикулярно его оси. В направлении оси сопла в цилиндрическом теле выполнен сквозной канал, внутренний профиль которого совпадает с контуром тягового сопла на длине поперечного размера цилиндрического тела. Ось вращения цилиндрического тела и ось тягового сопла лежат в одной плоскости. Двигатель также содержит лазерную систему импульсного зажигания лазерной искрой, возбуждаемой в камере сгорания, командный датчик синхронной подачи импульса зажигания и запирания выхода камеры сгорания роторным клапаном, один выход которого соединен с лазерной системой, а другой связан с приводом роторного клапана. Изобретение позволяет увеличить стабильность работы двигателя, расширить диапазон его рабочих режимов, уменьшить вибрационные нагрузки.

Недостатком данной конструкции является сложность конструкции, и сложность управления процессом ввода детонационного топлива и запирания камеры воспламенения.

Задачей изобретения является упрощение конструкции и повышение удельного импульса ракетного двигателя.

Поставленная задача решается тем, что ПКРД, состоящий из корпуса, соплового блока, канала подачи кислорода, камеры распределения кислорода и камеры вихревой закрутки кислорода, соединенных между сбой тангенциальными каналами, обеспечивающими закрутку потока кислорода, конического канала, соединяющего камеру вихревой закрутки кислорода и камеру сгорания, по которой проходит закрученный поток кислорода, а также из канала подачи водорода, камеры распределения водорода и камеры вихревой закрутки водорода, соединенных между сбой тангенциальными каналами, обеспечивающими закрутку потока водорода, конического канала, соединяющего камеру вихревой закрутки водорода и камеру сгорания, по которому проходит закрученный поток водорода, а при вхождении потока кислорода и потока водорода в камеру сгорания происходит смешивание кислорода и водорода с образованием горючей смеси, далее горючая смесь, двигаясь по спирали, заполняет камеру сгорания, образуя при этом воронку, ось симметрии воронки совпадает с осью симметрии камеры сгорания, в днище камеры сгорания выполнена запальная камера, в которой создаются условия для возникновения детонационной волны, и устанавливается запальная свеча, создающая искру между электродами свечи, при достижении потоком горючей смеси зоны искрообразования в запальной камере происходит ее воспламенение с образованием детонационной волны сгорания горючей смеси, распространяющейся с очень большой скоростью, при этом происходит взрывной подъем температуры и давления продуктов сгорания, далее происходит расширение продуктов сгорания, а воронка, образовавшаяся при заполнении камеры сгорания, будет способствовать образованию кумулятивной струи, истекающей со скоростью большей, чем скорость истечения продуктов сгорания из камер ракетных двигателей на твердом или жидком топливе, что приведет к увеличению удельного импульса, дальнейшее распространение ударной волны по камере сгорания приведет к разделению потоков кислорода и водорода, это исключит возможность воспламенения водорода и кислорода в зоне смешения при следующем цикле заполнения камеры сгорания, а следующий цикл начнется сразу, как только произойдет истечение продуктов сгорания и падение давления в камере, далее цикл повторяется.

Сущность изобретения поясняется чертежами на фиг. 1, фиг. 2 и фиг. 3.

На фиг. 1 поясняется общая конструкция ПКРД и распределение газовых потоков.

На фиг. 2 показаны тангенциальные каналы и завихрение потока кислорода в вихревой камере.

На фиг. 3 показаны тангенциальные каналы и завихрение потока водорода в вихревой камере.

ПКРД состоит из: корпуса 1, соплового блока 2, канала подачи кислорода 5, камеры распределения кислорода 3 и камеры вихревой закрутки кислорода 4, соединенных между собой тангенциальными каналами 14, обеспечивающими закрутку потока кислорода, конического канала 9, соединяющего камеру вихревой закрутки кислорода 4 и камеру сгорания 11, по которому проходит закрученный поток кислорода, а также из канала подачи водорода 6, камеры распределения водорода 7 и камеры вихревой закрутки водорода 8, соединенных между сбой тангенциальными каналами 15, обеспечивающими закрутку потока водорода, конического канала 10, соединяющего камеру вихревой закрутки водорода 8 и камеру сгорания 11, по которому проходит закрученный поток водорода, а при вхождении потока кислорода и потока водорода в камеру сгорания происходит смешивание кислорода и водорода с образованием горючей смеси, далее горючая смесь, двигаясь по спирали, заполняет камеру сгорания, образуя при этом воронку, ось симметрии воронки совпадает с осью симметрии камеры сгорания, в днище камеры сгорания устанавливается запальная свеча 12, создающая искру между электродами свечи, перед свечой выполнена запальная камера 13, в которой создаются условия для возникновения детонационной волны.

Работа ПКРД происходит следующим образом: по каналу 5 кислород поступает в камеру распределения кислорода 3, из которой он по тангенциальным каналам 14 поступает в вихревую камеру 4, где происходит закрутка потока кислорода, далее по коническому каналу 9 закрученный поток кислорода поступает в камеру сгорания 11. Одновременно с кислородом по каналу 6 в распределительную камеру 7 поступает водород, из которой по тангенциальным каналам 15 он поступает в вихревую камеру 8, где происходит закрутка водорода, далее закрученный поток водорода по коническому каналу 15 поступает в камеру сгорания 11. При вхождении потока кислорода и потока водорода в камеру сгорания 11 происходит смешивание кислорода и водорода с образованием горючей смеси, далее горючая смесь, двигаясь по спирали, заполняет камеру сгорания, образуя при этом воронку, ось симметрии воронки совпадает с осью симметрии камеры сгорания 11, в днище камеры сгорания выполнена запальная камера 13, в которой устанавливается запальная свеча 12, создающая искру между электродами свечи. При достижении потоком горючей смеси зоны искрообразования в запальной камере, происходит ее воспламенение с образованием детонационной волны сгорания горючей смеси, распространяющейся с очень большой скоростью при этом происходит взрывной подъем температуры и давления продуктов сгорания, далее происходит расширение продуктов сгорания, а воронка, образовавшаяся при заполнении камеры сгорания, будет способствовать образованию кумулятивной струи, истекающей со скоростью большей, чем скорость истечения продуктов сгорания из камеры ракетных двигателей на твердом или жидком топливе, что приведет к увеличению удельного импульса, дальнейшее распространение ударной волны по камере сгорания приведет к разделению потоков кислорода и водорода, это исключит возможность воспламенения водорода и кислорода в зоне смешения при следующем цикле заполнения камеры сгорания, а следующий цикл начнется сразу, как только произойдет истечение продуктов сгорания и падение давления в камере, далее цикл повторяется. Таким образом достигается пульсирующая работа ПКРД с повышенным удельным импульсом.

Пульсирующий кумулятивный ракетный двигатель (далее - ПКРД), содержащий камеру сгорания, сопловой блок, канал подачи кислорода и канал подачи водорода, камеру распределения кислорода, камеру распределения водорода, камеру вихревой закрутки кислорода, камеру вихревой закрутки водорода, отличающийся тем, что кислород из камеры вихревой закрутки кислорода поступает в камеру сгорания по коническому каналу, который соединяет камеру вихревой закрутки кислорода и камеру сгорания, а водород из камеры вихревой закрутки водорода поступает в камеру сгорания по своему коническому каналу, который соединяет камеру вихревой закрутки водорода и камеру сгорания, а при вхождении потока кислорода и потока водорода в камеру сгорания происходит смешивание кислорода и водорода с образованием горючей смеси, которая, двигаясь по спирали, заполняет камеру сгорания, образуя при этом воронку, ось симметрии воронки совпадает с осью симметрии камеры сгорания, а в днище камеры сгорания выполнена запальная камера, в которой создаются условия для возникновения детонационной волны при воспламенении горючей смеси от запальной свечи, при этом происходит подъем температуры и давления продуктов сгорания, далее происходит расширение продуктов сгорания, а воронка, образовавшаяся при заполнении камеры сгорания, обеспечивает образование кумулятивной струи.



 

Похожие патенты:

Группа изобретений относится к ракетной технике. Устройство для разложения перекиси водорода содержит камеру разложения с расположенным внутри нее катализатором, выполненную с возможностью поступления в нее перекиси водорода с концентрацией от 80% до 100% из резервуара для хранения.

Группа изобретений относится к ракетной технике. Устройство для разложения перекиси водорода содержит камеру разложения с расположенным внутри нее катализатором, выполненную с возможностью поступления в нее перекиси водорода с концентрацией от 80% до 100% из резервуара для хранения.

Изобретение относится к ракетно-космической технике. Жидкостная ракетная двигательная установка космического аппарата, содержащая маршевый двигатель с насосной системой подачи компонентов топлива в камеру сгорания из объемных баков 1 низкого давления, двигатели 5 ориентации и стабилизации с подачей компонентов топлива в камеры сгорания из баков 10 высокого давления, при этом баки 10 высокого давления выполнены малообъемными и проточными, разделены подвижным герметичным элементом - сильфоном 14 на жидкостную 11 и газовую 15 полости, при этом объемные баки 1 дополнительно сообщены с жидкостными полостями 11 малообъемных баков 10 магистрали 4, в этих магистралях 4 установлены насосы 6 с приводом от электродвигателей 7, обратные клапаны 9, жидкостные полости 11 малообъемных баков 10 сообщены с входами в двигатели 5 ориентации и стабилизации, их газовые полости 15 заполнены газом наддува и герметично отдалены от жидкостных полостей 11 баков и окружающей среды, а на входах магистралей подачи компонентов топлива в двигатели 5 ориентации и стабилизации последовательно установлены сигнализаторы давления 12 верхнего и нижнего уровня давления компонентов топлива и регуляторы 13 давления.

Изобретение относится к наддуву топливных баков ракетного двигателя. Устройство содержит основной нагреватель (58), приспособленный для нагревания компонента ракетного топлива, поступающего из бака (16) перед его возвращением в этот бак.

Изобретение относится к ракетной технике. Способ дросселирования тяги ЖРД, основанный на снижении массовых расходов компонентов топлива в камеру с нерегулируемыми форсунками, при котором после уменьшения массовых расходов ниже заданных значений подают газ в полости магистралей питания камеры на входах в форсуночную головку камеры и смешивают его с жидкими компонентами топлива, создавая гомогенные мелкодисперсные эмульсии компонентов топлива, относительные объемные газосодержания которых увеличивают с увеличением степени дросселирования тяги.

Изобретение относится к ракетным двигателям. В ракетном двигателе, содержащем газогенератор, связанный газоводами с теплообменником и смесительной головкой камеры сгорания через дроссель с баками горючего и окислителя, снабженном системой автоматического запуска и управления, согласно изобретению газогенератор оснащен запальным устройством со свечой зажигания, форсункой, соединенной с воздушным баллоном, баком горючего, а также двумя инжекторами с форсунками, один из которых присоединен через дроссель к баку с горючим, другой - через дроссель к баку с окислителем, при этом оба инжектора через газозаборники соединены с полостью высокого давления газогенератора.

Изобретение относится к области ракетной техники и может быть использовано при разработке ракеты-носителя (РН) для легких нагрузок. Жидкостный ракетный двигатель (ЖРД) включает камеры сгорания, четыре пневмонасосных агрегата для подачи топлива и окислителя, бак с гелием высокого давления, бак с жидким метаном, при этом каждый пневмонасосный агрегат содержит два выхода для отвода газообразной и жидкой компоненты, причем газообразные компоненты метана, кислорода отводятся к рулевым камерам сгорания для последующего дожигания.

Изобретение относится к области двигателестроения и может быть использовано в космической технике или авиации. Способ создания тяги двигателя, основанный на использовании энергетических ресурсов топлива, в котором рабочее тело вводят в сопло тангенциально с критической скоростью в поперечном направлении и обеспечивают потоку круговое - вращательное движение по всей длине сопла.

Изобретение относится к области ракетно-космической техники и может быть использовано для спуска отделяющихся частей ступеней ракеты после выключения маршевого жидкостного ракетного двигателя (ЖРД).
Ракетный двигатель содержит камеру сгорания, причем в камеру сгорания подается боран, или силан, или фосфин, или герман, или другие гидриды, имеющие положительную энтальпию образования из простых веществ, или их смесь при температуре, обеспечивающей самоподдерживающийся характер реакции термического разложения указанных веществ за счет тепла экзотермической реакции.

Изобретение относится к области испытаний, в частности стендовых испытаний режимов работы ЖРД, работающих в режиме непрерывной детонации на топливной смеси, состоящей из газообразного кислорода и керосина.

Пульсирующий реактивный двигатель содержит корпус, камеру сгорания с соплом, системы подачи компонентов в камеру сгорания и воспламенения топливной смеси. Камера сгорания имеет кольцевое поперечное сечение.

Камера сгорания с повышением давления содержит детонационную камеру, камеру предварительного горения, вихревой генератор для закрутки окислителя на пути подачи окислителя, расширительно-отклоняющее сопло, между камерой предварительного горения и детонационной камерой, обеспечивающее диффузионный путь жидкости между ними и воспламеняющее устройство в контакте с низкоскоростной вихревой зоной камеры предварительного горения.

Изобретение относится к области гиперзвуковых летательных аппаратов, а именно к высокоскоростным прямоточным воздушно-реактивным двигателям. Сверхзвуковой прямоточный воздушно-реактивный двигатель с пульсирующим режимом запуска содержит сверхзвуковой воздухозаборник, изолятор, сверхзвуковую камеру сгорания, состоящую из участка постоянного сечения и расположенных за ним нескольких участков переменного сечения, сверхзвуковое сопло, несколько поясов подачи топлива.

Импульсный детонационный ракетный двигатель содержит детонационную камеру сгорания, вход которой через торцевую стенку служит для порционного ввода детонационного топлива и герметично соединен через баллистическое устройство с магнитокумулятивным генератором импульсов, источник начального возбуждения.

Цель изобретения - повышение эффективности ВРД стабильным поступлением воздушной массы при любых режимах работы при попутном увеличении силы тяги. Цель достигается путем поперечного выдавливания необходимой воздушной массы для камеры сгорания из ускоряющегося столба воздуха реактивной струей из канала, образованного лопаточным ротором в цилиндрическом корпусе с последующей заменой ускоренной воздушной массы на вновь сформированный воздушный массив с последующей заменой уже отсеченной части реактивной струи на столб воздуха, осуществляемого в тупиковом положении канала поперечным заполнением освобождаемого пространства воздухом из окружающего пространства через винтовое окно корпуса в период его движении для захода в реактивную струю с другой стороны.

Способ создания реактивной тяги бесклапанного пульсирующего воздушно-реактивного двигателя может быть применен в двигателях летательных аппаратов. Способ включает циклический выброс продуктов сгорания и всасывание атмосферного воздуха во впускном канале с осуществлением одновременной генерации двух кольцевых вихрей разнонаправленной закрутки, которую осуществляют в передней части камеры сгорания на цикле расширения потока продуктов сгорания, идущего в направлении входного канала.

Прямоточный турбореактивный детонационный двигатель состоит из входной части, средней части и выходной части. Во входную часть входят вентилятор и компрессор.

Изобретение относится к области двигателестроения. Пульсирующий газотурбинный двигатель содержит корпус, ротор, снабженный реактивными двигателями с компрессором на валу, и газовую турбину, посаженную коаксиально на вал ротора.

Способ организации рабочего процесса в непрерывно-детонационной камере сгорания турбореактивного двигателя включает двухступенчатое преобразование химической энергии топлива в полезную механическую работу и в кинетическую энергию реактивной струи.

Пульсирующий кумулятивный ракетный двигатель содержит камеру сгорания, сопловой блок, канал подачи кислорода и канал подачи водорода, камеру распределения кислорода, камеру распределения водорода, камеру вихревой закрутки кислорода, камеру вихревой закрутки водорода. Кислород из камеры вихревой закрутки кислорода поступает в камеру сгорания по коническому каналу, который соединяет камеру вихревой закрутки кислорода и камеру сгорания. Водород из камеры вихревой закрутки водорода поступает в камеру сгорания по своему коническому каналу, который соединяет камеру вихревой закрутки водорода и камеру сгорания. При вхождении потока кислорода и потока водорода в камеру сгорания происходит смешивание кислорода и водорода с образованием горючей смеси, которая, двигаясь по спирали, заполняет камеру сгорания, образуя при этом воронку, ось симметрии воронки совпадает с осью симметрии камеры сгорания. В днище камеры сгорания выполнена запальная камера, в которой создаются условия для возникновения детонационной волны при воспламенении горючей смеси от запальной свечи. Изобретение направлено на упрощение конструкции и повышение удельного импульса. 3 ил.

Наверх