Термоэлектротрансформатор

Изобретение относится к области энергетики, в частности теплоэлектрогенерации. Сущность изобретения заключается в том, что устройство предусматривает когенерацию тепловой и электрической мощности за счет низкотемпературных источников - вода, воздух, грунт, солнечное излучение, для чего в теплонасосе дополнительно предусмотрены регулятор подачи тепловой энергии, контроллер и электромотор-генератор, вход которого подключен к источнику электрической энергии, а выход подключен к потребителю электрической энергии, управляющий канал мотор-генератора подключен к контроллеру, второй управляющий канал которого подключен к регулятору подачи тепловой энергии, вход которого подключен к конденсатору, а выход подключен к потребителю тепловой энергии, при этом дроссель выполнен в виде сопла турбины, вал которой соединен с валом компрессора, вал которого соединен с валом электромотор-генератора. Техническим результатом является повышение эффективности производства тепловой и электрической мощности, производимой в зависимости от пропорций, задаваемых потребителем. 1 ил.

 

Изобретение относится к области энергетики, в частности к теплоэлектрогенерации.

Известны и широко применяются тепловые насосы, использующие низкотемпературные источники тепла для термотрансформации мощности низкотемпературных источников - вода, воздух, грунт, солнечное излучение, в мощность более высокой температуры, пригодной для отопления жилых и производственных помещений.

Недостатком указанных устройств является низкий коэффициент трансформации электрической мощности в тепловую мощность - СОР. Коэффициент СОР показывает во сколько раз количество тепловой мощности, передаваемой потребителю, превышает количество электрической мощности необходимой для переноса тепловой мощности от низкотемпературного источника высокотемпературному потребителю. Реальные значения эффективности современных тепловых насосов составляют порядка СОР=2.0 при температуре источника (испарителя) -20°С, и порядка СОР=4.0 при температуре источника +7°С.

Известны способы и устройства позволяющие трансформировать тепловую мощность низкотемпературных источников в электрическую. Наиболее близким является двигатель Стирлинга, который имеет следующие преимущества:

- как и все двигатели внешнего сгорания, двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями воды в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т.д.,

- двигатель Стирлинга позволяет обеспечить недостижимый для других двигателей запас работоспособности в десятки и сотни тысяч часов непрерывной работы,

- для трансформации некоторых видов тепловой мощности, особенно при небольшой разнице температур, двигатели Стирлинга являются наиболее эффективными видами двигателей. Например, в случае преобразования в электричество мощность солнечной энергии двигатели Стирлинга дают больший КПД (до 31,25%), чем паровые тепловые машины,

- двигатель Стирлинга экологически чист, не расходует рабочее тело. Экологическая чистота двигателя, обусловлена экологической чистотой источника тепла.

Недостатками двигателей Стирлинга, в том числе роторных, (патент 2451811) являются сложность конструкции, большее количество деталей конструкции, чем у турбины, низкие обороты вала, переменный момент на валу, что вызывает вибрацию, все это обуславливает повышенные тепловые потери и соответственно низкий к.п.д. трансформации тепловой мощности в механическую.

Известно устройство - Тепловой электрогенератор Capstone WHG125 http://ngee.ru/catalog-kompanii?id=264&type=11&view=obiect, который состоит из испарителя, турбины с электрогенератором, конденсатора, и компрессора (насоса). В указанном устройстве применяется органический цикл Ренкина (ORC).

Устройство работает следующим образом: Рабочее тело R245fa в ресивере находится в жидком состоянии при температуре и давлении конденсации. Насос перекачивает R245fa в испаритель, повышая давление. Рабочее тело проходит через экономайзер, нагреваясь теплом пара из электросилового модуля. Далее рабочее тело попадает в испаритель, где происходит переход в паровую фазу за счет передачи тепла от внешнего источника. Затем оно в виде пара попадает в турбину в электросиловом блоке, на которой давление пара снижается до давления конденсации, приводя в движение ротор с электрогенератором. Выполнив работу в электросиловом блоке, рабочее тело все еще содержит большое количество тепла, часть которого передается жидкой фазе в экономайзере для повышения эффективности работы системы в целом. Рабочее тело в парообразном состоянии попадает в охладитель, где конденсируется в жидкость, после чего стекает в ресивер для повторного использования в цикле. Устройство обладает герметичным силовым блоком с турбиной на магнитных подшипниках, работающей на 26500 об/мин. Уровень эффективности преобразования тепловой энергии в электрическую энергию составляет 38%

Недостатками указанного устройства являются: отсутствие возможности работать в режиме теплового насоса, наличие потерь мощности необходимой для работы насоса (компрессора) посредством электропривода, соответственно низкий к.п.д.

Задача заявляемого изобретения - создание генератора тепловой и электрической мощности использующего низкотемпературные источники тепла, позволяющего обеспечить высокоэффективный процесс когенерации тепловой и электрической мощности.

Технический результат достигается тем, что заявленное устройство, состоящее из испарителя, конденсатора, компрессора, дросселя, регулятора подачи тепловой мощности, электромотор-генератора и контроллера предназначенное для генерации как тепловой, так и электрической мощности. При этом, с целью повышения коэффициента трансформации - СОР и генерации электрической мощности из тепловой мощности, устройство выполнено таким образом, что вход электромотор-генератора подключен к источнику электрической мощности, а выход подключен к потребителю электрической мощности, вход регулятора подачи тепловой мощности подключен к конденсатору, а выход подключен к потребителю тепловой мощности, при этом дроссель выполнен в виде сопла турбины, вал которой соединен с валом компрессора, вал которого соединен с валом электромотор-генератора.

Принцип работы устройства основан на том, что количество механической мощности компрессора, требуемой для работы теплового насоса составляет до 25%, (СОР=4.0) от количества тепловой мощности, передаваемой от низкотемпературного источника высокотемпературному потребителю. В тоже время уровень эффективности преобразования тепловой мощности в электрическую мощность посредством турбины в тепловом электрогенераторе Capstone WHG125 составляет = 38%. Таким образом, эффективность преобразования тепловой мощности в электрическую мощность посредством турбины составляет 38% что позволяет создать механическую мощность на валу компрессора превышающую необходимую мощность для работы теплового насоса с существующей эффективностью 25%, (СОР=4.0), что в свою очередь позволяет одну часть тепловой мощности рабочего тела с высокой температурой в конденсаторе использовать для создания на валу компрессора механической мощности необходимой для переноса рабочим телом тепловой мощности от низкотемпературной части устройства - испарителя к высокотемпературной части устройства - конденсатору, а другую часть тепловой мощности направить потребителю, либо использовать для создания электрической мощности электромотор-генератором. При этом часть тепловых потерь мощности в механизмах заявляемого устройства рекуперируется рабочим телом, что минимизирует совокупные потери мощности устройства.

Схема устройства представлена на фиг. 1.

Устройство работает следующим образом:

Потребитель посредством регулятора 5 устанавливает количество потребляемой тепловой мощности. Рабочее тело находится в испарителе 2 при температуре источника тепловой мощности (грунт, вода, воздух). Контроллер 6 включает электромотор-генератор 7 в режим электромотора, вал которого соединен с валом компрессора 4, компрессор перекачивает рабочее тело из испарителя 2 в конденсатор 1. Рабочее тело, за счет повышения давления нагревается и передает тепловую мощность от конденсатора через регулятор 5 потребителю. Далее рабочее тело с высокой температурой поступает на вход сопла турбины 3, вал которой соединен с валом компрессора 4 и валом электромотор-генератора. Сопло турбины одновременно выполняет функцию дросселя, понижающего давление рабочего тела, и функцию конструктивного элемента турбины, где рабочее тело отдает тепловую мощность, а турбина преобразовывает тепловую мощность в механическую мощность. При прохождении через турбину рабочее тело охлаждается ниже температуры испарителя, далее, рабочее тело поступает в испаритель, где нагревается до температуры испарителя, получая от источника тепла тепловую мощность, необходимую для работы устройства. При этом, потребление электрической мощности от внешнего источника электромотор-генератором снижается за счет механической мощности создаваемой турбиной на валу, а коэффициент трансформации электрической мощности в тепловую мощность - СОР возрастает. При снижении тепловой мощности, направляемой потребителю, избыточная часть тепловой мощности сосредоточенной в конденсаторе трансформируется посредством турбины в механическую мощность, достаточную для работы компрессора, и потребление электрической мощности от внешнего источника электромотор-генератором прекращается, контроллер 6 переключает электромотор-генератор в режим электрогенератора, в котором часть механической мощности, свыше необходимой для работы компрессора трансформируется в электрическую мощность и направляется потребителю. В таком режиме устройство генерирует электрическую мощность за счет источника тепловой мощности аналогично двигателю Стирлинга.

Преимуществами заявленного устройства являются:

1. Когенерация тепловой и электрической мощности из разнообразных низкотемпературных источников тепловой мощности (грунт, вода, воздух, солнечная энергия и др.) в широком диапазоне пропорций задаваемых потребителем.

2. Высокий коэффициент трансформации - СОР при работе устройства в режиме теплонасоса, который достигается за счет применения в качестве дросселя сопла турбины, вал которой соединен с валом компрессора и валом электромотор-генератора, а так же за счет рекуперации рабочим телом тепловых потерь.

3. Компактность низкая материалоемкость, низкий уровень вибраций достигаются за счет возможности расположения электромотор-генератора, компрессора и турбины на одной оси и на одном валу, что позволяет работать устройству на высоких оборотах, уровень вибраций снижается за счет отсутствия в заявленном устройстве возвратно-поступательных механизмов, таких как в известных теплонасосах и двигателях Стирлинга.

Термоэлектротрансформатор - генератор тепловой и электрической мощности, использующий низкотемпературные источники тепла, представляющий собой тепловой насос с испарителем, конденсатором, компрессором и дросселем, отличающийся тем, что дополнительно к тепловому насосу предусмотрены регулятор подачи тепловой мощности, контроллер, турбина и электромотор-генератор, вход которого подключен к источнику электрической мощности, а выход подключен к потребителю электрической мощности, управляющий канал электромотор-генератора подключен к контроллеру, второй управляющий канал которого подключен к регулятору подачи тепловой мощности, вход которого подключен к конденсатору, а выход подключен к потребителю тепловой мощности, при этом дроссель выполнен в виде сопла турбины, вал которой соединен с валом компрессора, вал которого соединен с валом электромотор-генератора.



 

Похожие патенты:

Изобретение относится к области стационарной и транспортной теплоэнергетики, а именно к поршневым, газо- и паротурбинным установкам, работающим на криогенных углеводородных топливах, и может быть использовано при получении диоксида углерода в стационарных и транспортных энергетических установках с двигателями внутреннего сгорания, газовыми или паровыми турбинами.

Изобретение относится к устройствам термостатирования для холодильно-нагревательной установки. Устройство термостатирования для холодильно-нагревательной установки содержит датчик 1 внешней температуры, который установлен снаружи холодильно-нагревательной установки 2, триггер Шмитта 3, вход которого подключен к выходу датчика 1 внешней температуры, коммутатор 4, второй вход которого подключен к выходу термостата 5 холодильно-нагревательной установки 2, установленному в камере 6 для хранения продукта, и первый выход которого подключен к входу компрессора 7 холодильно-нагревательной установки 2, и инвертор 8, вход которого подключен к второму выходу коммутатора 4 и выход которого подключен к входу нагревателя 9, который установлен в камере 6 для хранения продукта холодильно-нагревательной установки 2.

Изобретение относится к устройствам для очистки воды замораживанием и может быть использовано в промышленных и бытовых условиях. Устройство для очистки воды замораживанием содержит камеру холода 1, в которой расположены резервуары 2 со съемными крышками 4, выполненные в виде усеченного конуса.

Изобретение относится к области теплоэнергетики. Бестопливная тригенерационная установка включена между газопроводом высокого давления и газопроводом низкого давления, разделенными первым дросселем.

Изобретение относится к технологии получения дистиллированной воды и может быть использовано в пищевой, химической, фармацевтической, косметической и энергетической отраслях промышленности для очистки и обессоливания воды, концентрирования рассолов, водоподготовки и деминерализации.

Группа изобретений относится к оборудованию для наземных испытаний объектов ракетно-космической техники. Способ воздушного термостатирования отсеков космического аппарата (КА) включает нагнетание воздуха из окружающей среды, его охлаждение, осушку, нагревание и подачу в термостатируемый отсек КА.

Субатмосферная система теплохолодоснабжения для кондиционирования воздуха относится к области теплоэнергетики, а именно к энергосберегающим технологиям, и предназначена для автономного отопления, горячего водоснабжения и холодоснабжения жилых, общественных и производственных зданий.

Изобретение относится к управлению климатической установкой транспортного средства. Для управления климатической установкой регулируют состояние клапана смешивания воздуха и компрессор в ответ на нагрузку устройства преобразования энергии, большую, чем пороговое значение.

Изобретение относится к области энергетики, а именно к системам утилизации тепла с холодильных машин. Система включает линии нагнетания холодильной машины и утилизации тепла, жидкостную линию, линии байпас газ и байпас жидкость.

Изобретение относится к теплотехнике и может быть использовано для снабжения теплом и холодом автономных объектов. Бездроссельная теплонасосная установка содержит контуры охлаждения и нагрева, между которыми расположены компрессоры.

Холодильник включает охлаждающую часть для охлаждения объекта посредством теплообмена с хладагентом, детандер-компрессор и линию циркуляции хладагента для циркуляции хладагента через компрессор, детандер и охлаждающую часть.

Изобретение относится к области теплоэнергетики. Бестопливная тригенерационная установка включена между газопроводом высокого давления и газопроводом низкого давления, разделенными первым дросселем.

Изобретение относится к теплоэнергетике. Между газопроводами высокого и низкого давления включены первый дроссель, детандер с электрогенератором, соединенным с потребителем и двигателем компрессора, первый теплообменник на линии подачи газа, компрессор, вход которого соединен с выходом испарителя, низкопотенциальный источник тепла.

Изобретение предназначено для выработки электроэнергии на энергетических установках газораспределительных станций и на газорегуляторных пунктах. Природный газ высокого давления расширяют в турбодетандере и снижают его давление до уровня, требуемого конкретному потребителю, поддерживая его температуру не менее 278 К.

Изобретение относится к способам сжатия рабочей жидкости, используемым для переноса теплоты от теплоносителя с более низкой (Е) температурой к теплоносителю с более высокой температурой (Al), и может быть использовано в тепловом насосе.

Газотурбодетандерная энергетическая установка газораспределительной станции содержит турбодетандер с регулируемым сопловым аппаратом, газотурбинную установку с компрессором низкого давления, камерой сгорания и газовой турбиной, электрогенератор, газопровод топливного газа, выходную газовую магистраль, обводную магистраль с редукционной установкой, систему управления, теплообменник предварительного подогрева газа высокого давления, теплообменник подогрева газа выходной газовой магистрали.

Изобретение относится к энергетике. Система для снижения давления в находящейся под давлением текучей среде в трубопроводе содержит по меньшей мере одно устройство для снижения давления для расширения текучей среды в трубопроводе для получения более низкого давления; и транскритический тепловой насос для обеспечения циркуляции сверхкритической текучей среды, причем сверхкритическая текучая среда подвергается охлаждению, чтобы выделить тепло для передачи к находящейся под давлением текучей среде в трубопроводе перед по меньшей мере одним расширением указанной находящейся под давлением текучей среды.

Способ предназначен для раздачи природного газа потребителям газа низкого давления с получением сжиженного газа. Способ заключается в отводе потока газа из магистрального трубопровода высокого давления, расширении его в многоступенчатой турбине с получением в ней механической энергии, теплообмене в теплообменнике и раздаче полученного газа низкого давления потребителю, при этом газ из магистрального трубопровода высокого давления направляют на вход тракта горячего теплоносителя теплообменного устройства и охлаждают, а на выходе из тракта его направляют в многоступенчатую турбину, где охлажденный поток газа расширяют до давления меньше заданного давления подачи потребителю в трубопроводе низкого давления, при котором подаваемый поток сжатого природного газа меняет свои параметры и свое агрегатное состояние, переходя из однофазного на входе в многоступенчатую турбину в двухфазный поток на выходе из нее, при этом из последнего отделяют в сепараторе жидкую фазу и направляют для раздачи в трубопровод сжиженного газа, а оставшуюся после отделения часть потока направляют на вход тракта холодного теплоносителя теплообменного устройства для подогрева при теплообмене с подаваемым потоком сжатого природного газа из магистрального трубопровода высокого давления и далее сжимают эту часть в дожимающем компрессоре до давления, равного давлению в трубопроводе низкого давления, одновременно нагревая ее до положительных температур, а затем направляют для раздачи в трубопровод низкого давления, причем на сжатие этой части природного газа в компрессоре используют механическую энергию расширения, полученную в многоступенчатой турбине, при этом отделение сжиженной части природного газа осуществляют после каждой ступени турбины.

Изобретение относится к детандер-генераторным агрегатам. Детандер-генераторный агрегат содержит первую ступень детандера для привода электрогенератора, вторую ступень детандера для привода компрессора, теплообменник, дроссель, испаритель, газопроводы высокого и низкого давления, первую, вторую и байпасную регулировочно-запорные электроприводные задвижки, насос с частотно-регулируемым приводом для подачи низкопотенциального теплоносителя в испаритель, блок управления, датчики температуры и давления.

Изобретение относится к энергетическому машиностроению. Турбоагрегат содержит корпус с установленным внутри него на подшипниках валом.

Гидро-теплоэлектростанция отрицательных температур с центробежным энергонакопительным приводом относится к электростанциям, работающим на энергии холода. Гидростанция имеет два узла.
Наверх