Способ определения массы и положения центра тяжести самолета

Изобретение относится к области весоизмерительной техники и может быть использовано для определения взлетной массы и положения центра тяжести самолета. Для реализации способа измеряют величины сил тяжести, действующие на все опоры самолета, которыми самолет касается горизонтальной поверхности аэродрома, предварительно амортизатор каждой опоры тарируется на стенде с получением численной зависимости длины сжатого амортизатора от величины вертикальной и осевой нагрузки, приложенной к амортизатору. В условиях аэродрома по всем опорам определяют искомые величины сжатия амортизаторов. По имеющимся зависимостям находят величины сил тяжести, действующие на опоры, массу и положение центра тяжести самолета находят по приведенным формулам. Технический результат заключается в упрощении процесса определения массы и положения центра тяжести самолета. 3 ил.

 

Изобретение относится к области весоизмерительной техники и может быть использовано для определения взлетной массы и положения центра тяжести самолета.

Известен способ определения веса и центровки с помощью измерения усилий на элементах шасси тензометрическим методом (Патент США №3203234, кл. 73/141, опубл. 31.08.1965), при котором на каждую опору шасси устанавливают тензометрические датчики. Недостатком такого способа является необходимость специального конструирования силовых элементов шасси для размещения на них тензометрических датчиков. Определенную сложность представляет также надежность эксплуатации датчиков в условиях воздействия воды, слякоти, снега и др. на взлетно-посадочных полосах и рулежных дорожках.

Известен способ определения веса и центровки самолета по патенту №2319115, кл. G01G 19/07, опубл. 10.03.2008, при котором устанавливают датчики давления на цилиндр каждой амортизационной опоры шасси, измеряют изменяющиеся давления газа в полости цилиндров в процессе руления самолета по неровностям аэродрома. Недостатком такого способа является необходимость специального конструирования силовых элементов шасси для размещения на них датчиков давления.

Наиболее близким к предлагаемому является способ определения веса и центровки самолета по патенту №2172475, кл. G01G 19/07, опубл. 20.08.2001, при котором на самолет устанавливают лазерный излучатель, посредством которого проецируют световой конус на рабочую поверхность сканирующего устройства, на которой фиксируют координаты проекции светового конуса и по их изменению с помощью вычислительного устройства определяют массу и центр масс летательного аппарата. Недостатком этого способа является закрепление лазерного излучателя на фюзеляже самолета в специальном гнезде, ориентированном относительно центра тяжести, обеспечивающим его привязку к координатным осям. В оптической системе используют координатные метки, которые проецируются на поверхность сканируемого устройства для привязки его по координатным осям самолета, затрудняющие эксплуатацию в различных сложных метеоусловиях.

Предлагаемое изобретение направлено на достижение технического результата, заключающегося в определении массы и положения центра тяжести самолета наиболее простым и недорогим способом.

Поставленная задача достигается способом определения массы и положения центра тяжести самолета, заключающийся в одновременном измерении величин сил тяжести, действующих на все опоры самолета, которыми самолет касается горизонтальной поверхности аэродрома.

Новым является то, что предварительно амортизатор каждой опоры тарируется на стенде с получением численной зависимости длины сжатого амортизатора от величины вертикальной и осевой нагрузки, приложенной к амортизатору, в условиях аэродрома по всем опорам определяют искомые длины сжатых амортизаторов, по имеющимся зависимостям находят величины сил тяжести, действующие на опоры, массу самолета находят по формуле:

где

М - масса самолета, кг;

Pi - сила тяжести, действующая на i-ю опору самолета, Н;

g - ускорение свободного падения, м/с2;

n - количество опор самолета;

M0 - масса неподрессоренной части всех опор самолета, расчет положения центра тяжести самолета производится по формулам:

где

Рн - сила, действующая на носовую опору;

Рл - сила, действующая на левую опору;

Рп - сила, действующая на правую опору;

Р - общий вес самолета;

Рннпно,

Рллпло,

Рпплпо,

где

Рнп - вес подрессоренной части носовой опоры;

Рлп - вес подрессоренной части левой опоры;

Рпп - вес подрессоренной части правой опоры;

Рно - вес неподрессоренной части носовой опоры;

Рло - вес неподрессоренной части левой опоры;

Рпо - вес неподрессоренной части правой опоры;

где

1 - расстояние от носовой опоры до плоскости, проходящей через основные опоры;

r - расстояние от носовой опоры до носка средней аэродинамической хорды (САХ) в продольной плоскости самолета;

ba - длина САХ;

- положение центра тяжести самолета в процентах от величины САХ.

Предлагаемый способ поясняется следующим чертежами, на которых изображены: на фиг. 1 - схема получения численной зависимости (тарировочной таблицы) величины сжатия амортизатора (длины сжатого амортизатора) от величины вертикальной и осевой нагрузки, где 1 - амортизатор без тарировочных грузов, 2 - фюзеляж самолета, 3 - амортизационные опоры, 4 - расстояние от фюзеляжа ненагруженного самолета до земной поверхности, 5 - расстояние от фюзеляжа самолета с тарировочным грузом №1 до земной поверхности, 6 - расстояние от фюзеляжа самолета с тарировочным грузом №2 до земной поверхности, 7 - тарировочный груз №1, 8 - тарировочный груз №2, на фиг. 2 - схема монтажа лазерных дальномеров на фюзеляже самолета около каждой амортизационной опоры шасси, где 9 - лазерные дальномеры, 10 - фюзеляж самолета, 11 - амортизационные опоры, на фиг. 3 - схема вычисления веса и положения центра тяжести самолета с трехстоечным шасси.

Способ осуществляется следующим образом. Предварительно получают численную зависимость длины сжатого амортизатора от величины вертикальной и осевой нагрузки, приложенной к амортизатору каждой опоры (см. фиг. 1). Устанавливают лазерные дальномеры 9 (см. фиг. 2) на фюзеляж самолета около точки крепления каждой амортизационной опоры шасси к корпусу самолета обеспечив возможность измерения расстояния до поверхности аэродрома. Затем, измерив, приближение фюзеляжа самолета к поверхности аэродрома с помощью лазерных дальномеров, определяют длину сжатия каждого амортизатора, вычисляют массу и положение центра тяжести самолета по формулам (1), (2), (3). Результат вычисления выдают на дисплей в кабине пилота, что дает возможность экипажу знать массу и положение центра тяжести самолета.

Важным достоинством предлагаемого способа является то, что его осуществляют с помощью установки на самолет устройств, не требующих больших трудозатрат или изготовления сложных узлов. Необходимо только изготовление узлов крепления лазерных дальномеров, а также, по желанию, ввод информации в дисплей пилота и в регистратор.

Таким образом, предложенный способ позволяет простыми средствами измерять взлетную массу и центровку летательного аппарата с достаточно высокой точностью.

Способ определения массы самолета, заключающийся в одновременном измерении величин сил тяжести, действующих на все опоры самолета, которыми самолет касается горизонтальной поверхности аэродрома, отличающийся тем, что предварительно амортизатор каждой опоры тарирует на стенде с получением численной зависимости длины сжатого амортизатора от величины вертикальной и осевой нагрузки, приложенной к амортизатору, в условиях аэродрома по всем опорам определяют искомые длины сжатых амортизаторов, по имеющимся зависимостям находят величины сил тяжести, действующие на опоры, массу самолета находят по формуле

где М - масса самолета, кг;

Pi - сила тяжести, действующая на i-ую опору самолета, Н;

g - ускорение свободного падения, м/с2;

n - количество опор самолета;

М0 - масса неподрессоренной части всех опор самолета.



 

Похожие патенты:

Изобретение относится к весоизмерительной технике и может быть использовано для предполетного определения массы и положения центра тяжести летательных аппаратов.

Изобретение относится к области авиации, в частности к устройствам балансировки и определения центров тяжести конструкций. Приспособление для измерения положения поперечного центра тяжести лопастей несущих и рулевых винтов вертолетов содержит рычаг, одной стороной опирающийся призмой на неподвижную опору, второй стороной опирающийся призмой на весы.

Изобретения относятся к авиационной технике, а именно к способам и устройствам определения центра масс (ЦМ) летательного аппарата (ЛА) в полете. Способ основан на измерении параметров полета ЛА, включает в себя измерение ускорений относительно ЦМ в двух фиксированных точках, расположенных вдоль продольной оси ЛА на известном расстоянии друг от друга, при помощи акселерометров, установленных в этих точках, один в хвостовой, другой в головной частях фюзеляжа, использование значения ускорения силы тяжести и на их основе определение ЦМ в установившемся режиме полета при выполнении соответствующего маневра.

Изобретение относится к области авиации, в частности к способам и системам расчета взлетного веса летательных аппаратов. Способ расчета взлетного веса летательного аппарата, выполненного с возможностью висения, содержит этапы, на которых регистрируют необходимую мощность висения в первый и второй момент времени, получают третьи значения второй величины, связанной с давлением на высоте полета, получают четвертые значения третьей величины, связанной с температурой на высоте полета, получают пятые значения четвертой величины, связанной с частотой вращения двигателя, рассчитывают шестые значения пятой величины, связанной с относительной плотностью на высоте полета в упомянутые первый и второй моменты времени.

Заявляемое изобретение относится к авиационной технике, а именно к способам и устройствам определения центра масс летательного аппарата (ЛА) в полете. Способ основан на измерении параметров полета летательного аппарата.

Изобретение относится к области авиационного приборостроения и может найти применение для определения центра масс летательного аппарата (ЛА) в полете. Технический результат - повышение точности.

Летающее устройство состоит из четырехколесной автомашины с установленным на нее жестким крылом, рулем направления полета в горизонтальной плоскости. Четырехколесная автомашина оборудована четырьмя датчиками давления колес на дорогу, а жесткое прямоугольное крыло выполнено несъемным, с малым удлинением, установлено выше крыши автомашины с зазором между нижней поверхностью крыла и крышей автомашины и снабжено механизацией крыла: двумя предкрылками, двумя закрылками, стабилизаторами, и реактивным движителем, работающим от генератора автомашины.

Изобретение относится к авиационной технике, в частности к бортовым информационно-вычислительным системам летательного аппарата. .

Изобретение относится к авиационной технике, в частности к бортовым информационно-вычислительным системам летательного аппарата. .

Изобретение относится к области измерительной техники, а именно к системам определения положения центра тяжести и нарушения взлетной центровки самолета. .
Наверх