Калибровочное устройство

Изобретение относится к области неразрушающего контроля технического состояния трубопроводов путем пропуска внутритрубного устройства. Технический результат заключается в увеличении срока эксплуатации комплектующих и повышении точности данных. Калибровочное устройство включает корпус, на котором установлены центрирующие манжеты, измерительная система и одометрическая система, при этом корпус содержит герметичную колбу с электронным оборудованием записи и хранения информации, а измерительная система состоит из измерительных рычагов, каждый измерительный рычаг включает кронштейн, ось кронштейна, рычаг, накладку, датчик угловых перемещений, поводок, пружину, ось датчика угловых перемещений, электрический кабель, при этом рычаг установлен на кронштейне и способен поворачиваться вокруг оси кронштейна в пределах диапазона, на рычаг установлена накладка, датчик угловых перемещений установлен на кронштейн и через электрический кабель соединен с электронным оборудованием записи и хранения информации, а ось датчика угловых перемещений через поводок пружиной соединена с рычагом, при этом каждый измерительный рычаг установлен на корпусе независимо от других измерительных рычагов, которые совместно образуют окружность, диаметр которой составляет 85% от наружного диаметра центрирующих манжет. 2 ил.

 

Изобретение относится к области неразрушающего контроля технического состояния трубопроводов путем пропуска внутритрубного устройства.

Из уровня техники известен внутритрубный дефектоскоп (патент RU 15518, МПК G01B 7/28, G01B 7/13, опубл. 20.10.2000), который содержит чувствительный рычаг, установленный на корпусе дефектоскопа, прижимаемый к внутренней поверхности трубопровода, свободный конец указанного рычага включает в себя съемную часть, контактирующую с внутренней поверхностью трубопровода, на корпусе дефектоскопа установлен датчик угла поворота указанного рычага, средства измерений, обработки и хранения получаемых данных измерений, источник питания, подключенный к средствам измерений, обработки и хранения данных.

Из уровня техники известен внутритрубный профилемер (патент RU 2164661, МПК G01B 5/28, G01B 7/34, G01B 7/28, F17D 5/00, G01B 7/30, опубл. 27.03.2001), включающий пояс чувствительных рычагов, установленных на корпусе по периметру вокруг главной оси трубопровода и прижимаемых к внутренней поверхности трубопровода, с регулярными промежутками между чувствительными рычагами, и, по крайней мере, один пояс датчиков угла поворота, установленных по периметру корпуса вокруг главной оси трубопровода, каждый из чувствительных рычагов кинематически связан с соответствующим ему датчиком угла поворота, при этом ось чувствительного рычага, соединяющая ось вращения рычага с ближайшей точкой касания рычага с внутренней поверхностью трубопровода номинального диаметра в плоскости, проходящей через главную ось трубопровода, образует угол 60-80° с главной осью трубопровода.

Известен внутритрубный многоканальный профилемер (патент RU 2529820, МПК G01B7/28, опубл. 27.09.2014), который состоит, по крайней мере, из одной секции, состоящей из корпуса, на котором установлены опорные диски, колесные блоки подвески, манжеты и два пояса измерительных подпружиненных рычагов таким образом, что полностью перекрывают всю длину окружности внутреннего диаметра трубопровода, а на конце каждого из измерительных подпружиненных рычагов закреплена полиуретановая накладка с залитыми в ней износостойкими шипами, при этом полиуретановая накладка измерительного подпружиненного рычага прижата к внутренней поверхности трубопровода.

Наиболее близким аналогом к заявленному устройству является шаблон внутритрубный (патент RU 2509254, МПК F16L 55/26, опубл. 10.03.2014), в котором вторая секция включает трубчатый корпус с установленными на нем с противоположных его концов тарельчатыми пружинами и спайдером и размещенным в его полости блоком измерения проходного сечения трубопровода. Спайдер имеет фланец, который является его несущей деталью и на котором при помощи кронштейнов, которые не показаны, прикреплены рычаги. На свободных концах рычагов установлены ролики с резиновыми кольцами по их периметру. Каждый из рычагов посредством шарнирного соединения соединен с диском. Спайдер содержит пружины, соединенные с диском для обеспечения прижатия роликов к стенкам трубопровода. Блок для измерения проходного сечения трубопровода включает сообщенный с рычагами спайдера толкатель, выполненный с возможностью взаимодействия с установленным в полости трубчатого корпуса второй секции поршнем, выполненным с возможностью возвратно-поступательного перемещения в полости трубчатого корпуса для измерения величины его перемещения и определения по этому перемещению величины проходного сечения трубопровода.

Общим недостатком перечисленных выше устройств является изнашиваемость контактных поверхностей измерительных рычагов, соприкасающихся с внутренней поверхностью трубопровода, что приводит к необходимости проведения частой замены изношенных частей измерительных рычагов. Частая замена изношенных частей рычагов влечет за собой увеличение себестоимости работ по внутритрубной диагностике трубопроводов. Контакт с внутренней поверхностью трубопровода быстро изнашиваемых контактных поверхностей измерительных рычагов приводит к получению недостоверной диагностической информации. Все перечисленные выше устройства имеют подпружиненную конструкцию измерительного рычага, контактирующего с внутренней поверхностью трубопровода. Подпружиненная конструкция измерительного рычага при встрече с геометрическими особенностями трубопровода при движении внутритрубного устройства в трубопроводе может вызвать инерционный отскок, что также приводить к получению недостоверной информации и даже к потере диагностической информации на отдельных участках трубопровода.

Под геометрическими особенностями трубопровода следует понимать сужения внутреннего проходного диаметра трубопровода, образовавшиеся из-за деформации трубопровода (вмятина); сужения внутреннего проходного диаметра трубопровода из-за выступающих во внутреннюю полость трубопровода конструктивных элементов трубопровода, крутоизгибные отводы трубопровода, а также сужения внутреннего проходного диаметра трубопровода из-за асфальтосмолопарафиновых отложений на внутренней стенке трубопровода.

Технический результат настоящего изобретения заключается в увеличении срока эксплуатации комплектующих и повышении точности данных, получаемых калибровочным устройством по результатам внутритрубной диагностики.

Технический результат достигается тем, что создано калибровочное устройство, которое включает корпус, на котором установлены центритрующие манжеты, измерительная система и одометр и ческа я система, при этом корпус содержит герметичную колбу с электронным оборудованием записи и хранения информации, а измерительная система состоит из измерительных рычагов, каждый измерительный рычаг включает кронштейн, ось кронштейна, рычаг, накладку, датчик угловых перемещений, поводок, пружину, ось датчика угловых перемещений, электрический кабель, при этом рычаг установлен на кронштейне и способен поворачиваться вокруг оси кронштейна в пределах диапазона, ограниченного упором на кронштейне, на рычаг установлена накладка, датчик угловых перемещений установлен на кронштейн и через электрический кабель соединен с электронным оборудованием записи и хранения информации, а ось датчика угловых перемещений через поводок пружиной соединена с рычагом, при этом каждый измерительный рычаг установлен на корпусе независимо от других измерительных рычагов, которые совместно образуют окружность, диаметр, размер которого составляет 85% от наружного диаметра центрирующих манжет.

Создание калибровочного устройства с заявленной настоящим изобретением конструкцией измерительной системы обеспечивает калибровочному устройству величину проходного сечения геометрических особенностей трубопровода до 60% от номинального внутреннего диаметра трубопровода и менее, а также обеспечивается проходимость крутоизогнутых отводов трубопровода размером 1,5 диаметра от номинального внутреннего диаметра трубопровода при норме изгиба трубопровода 5 диаметров от номинального внутреннего диаметра трубопровода. Отсутствие постоянного контакта накладок рычагов с внутренней поверхностью трубопровода повышает срок эксплуатации калибровочного устройства без замены комплектующих, повышение срока износа накладок обеспечивает повышение точности данных, получаемых в результате внутритрубной диагностики.

Изобретение поясняется чертежами, где на фиг. 1 изображена секция калибровочного устройства, фиг. 2 изображена конструкция измерительного рычага измерительной системы.

На фиг. 1 и 2 приняты следующие обозначения:

1. Корпус, содержащий герметичную колбу с электронным оборудованием записи и хранения информации (герметичная колба с электронным оборудованием записи и хранения информации не показана),

2. Центрирующая манжета,

3. Измерительная система с измерительными рычагами,

4. Одометрическая система,

5. Кронштейн,

6. Рычаг,

7. Накладка,

8. Пружина,

9. Датчик угловых перемещений,

10. Ось кронштейна,

11. Электрический кабель,

12. Поводок,

13. Ось датчика угловых перемещений.

Калибровочное устройство состоит их корпуса 1 (фиг. 1), на котором размещены центритрующие манжеты 2 (фиг. 1), при чем центритрующие манжеты 2 (фиг. 1) установлены в передней и задней частях калибровочного устройства. Также центритрующие манжеты 2 (фиг. 1) в количестве не менее двух установлены равномерно на корпусе 1 (фиг. 1). В задней части калибровочного устройства между двумя центритрующими манжетами 2 (фиг. 1) размещена измерительная система 3 (фиг. 1). В конце конструкции калибровочного устройства размещена одометрическая система 4 (фиг. 1). В состав измерительной системы 3 (фиг. 1) входят измерительные рычаги, каждый из которых состоит из кронштейна 5 (фиг. 2), являющегося базовой деталью, на котором подвижным соединением с помощью оси 10 (фиг. 2) установлен рычаг 6 (фиг. 2), который способен поворачивается вокруг оси 10 (фиг. 2) в пределах диапазона, ограниченного упором на кронштейне 5 (фиг. 2). На рычаг 6 (фиг. 2) установлена накладка 7 (фиг. 2).

На кронштейне 5 (фиг. 2) установлен датчик 9 (фиг. 2). Ось 13 (фиг. 2) датчика 9 (фиг. 2) через поводок 12 (фиг. 2) пружиной 8 (фиг. 2) соединена с рычагом 6 (фиг. 2). К датчику 9 (фиг. 2) подсоединен электрический кабель 11 (фиг. 2).

Заявленное калибровочное устройство работает следующим образом:

Калибровочное устройство перемещается внутри трубопровода вместе с перекачивающимся продуктом. Центритрующие манжеты 2 (фиг. 1) обеспечивают положение калибровочного устройства, соосное с осью трубопровода.

При этом конструкция калибровочного устройства выполнена так, что контактная часть измерительной системы 3 (фиг. 1) - накладки 7 (фиг. 2) рычагов 6 (фиг. 2), расположена на диаметре, который составляет 85% от диаметра центрирующих манжет. Накладки 7 (фиг. 2) рычагов 6 (фиг. 2) вступают в контакт с внутренней поверхностью трубопровода только при наезде калибровочного устройства на геометрическую особенность трубопровода, превышающую 15% номинального внутреннего диаметра трубопровода (проходное сечение - 85% номинального внутреннего диаметра трубопровода). Когда накладки 7 (фиг. 2) рычагов 6 (фиг. 2) измерительной системы 3 (фиг. 1) вступают в контакт с внутренней стенкой трубопровода, измерительная система 3 (фиг. 1) фиксирует геометрическую особенность трубопровода, а одометрическая система 4 (фиг. 1) - дистанцию, на которой геометрическая особенность трубопровода зафиксирована.

Отклонение положения рычага 6 (фиг. 2) фиксирует датчик угловых перемещений 9 (фиг. 2), который осью 13 (фиг. 2) через поводок 12 (фиг. 2) пружиной 8 соединен с рычагом 6, при этом к датчику угловых перемещений 9 (фиг. 2) подключен электрический кабель 11 (фиг. 2). Датчик угловых перемещений 9 (фиг. 2) формирует сигнал, который через кабель 11 (фиг. 2) передается в электронное оборудование записи и хранения информации, которое установлено в герметичной колбе корпуса 1 (фиг. 1).

Конструкция измерительной системы 3 (фиг. 1) обеспечивает калибровочному устройству величину проходного сечения геометрических особенностей трубопровода до 60% от номинального внутреннего диаметра трубопровода и менее, а также обеспечивается проходимость крутоизогнутых отводов трубопровода размером 1,5 диаметра от номинального внутреннего диаметра трубопровода при норме изгиба трубопровода 5 диаметров от номинального внутреннего диаметра трубопровода.

Калибровочное устройство, включающее корпус, на котором установлены центритрующие манжеты, измерительная система и одометрическая система, отличающееся тем, что корпус содержит герметичную колбу с электронным оборудованием записи и хранения информации, а измерительная система состоит из измерительных рычагов, каждый измерительный рычаг включает кронштейн, ось кронштейна, рычаг, накладку, датчик угловых перемещений, поводок, пружину, ось датчика угловых перемещений, электрический кабель, при этом рычаг установлен на кронштейне и способен поворачиваться вокруг оси кронштейна в пределах диапазона, ограниченного упором на кронштейне, на рычаг установлена накладка, датчик угловых перемещений установлен на кронштейн и через электрический кабель соединен с электронным оборудованием записи и хранения информации, а ось датчика угловых перемещений через поводок пружиной соединена с рычагом, при этом каждый измерительный рычаг установлен на корпусе независимо от других измерительных рычагов, которые совместно образуют окружность, диаметр, которой составляет 85% от наружного диаметра центрирующих манжет.



 

Похожие патенты:

Использование: в качестве первичного преобразователя для контроля размерных параметров деталей в технологических процессах обработки заготовок и деталей на металлорежущих станках.

Использование: для измерения высоты ступенчатых особенностей на гладких поверхностях. Сущность изобретения заключается в том, что способ включает проведение в вакууме термоэлектрического отжига подложки твердотельного материала пропусканием электрического тока с резистивным нагревом до температуры активируемой сублимации атомов, отжиг сочетают с подачей потока осаждаемого на поверхность материала подложки, перед отжигом на рабочей поверхности подложки формируют рельеф с геометрией и поперечным размером, определяемыми в оптический микроскоп, в составе рельефа выполняют углубление, в котором боковая часть расположена под углом ±45° относительно нормали к кристаллографической плоскости рабочей поверхности подложки, отжигом в дне углубления и вокруг углубления с примыканием к краю формируют две опорные поверхности, в боковой части углубления получают, сочетая отжиг с подачей потока материала подложки, калибровочную ступень и средство для определения калибровочной высоты калибровочной ступени, из счетного количества моноатомных ступеней, ступенчатый высотный калибровочный эталон содержит на подложке пару опорных поверхностей, расположенных друг относительно друга с образованием калибровочной ступени калибровочной высоты из счетного количества моноатомных ступеней, одна опорная поверхность - в дне углубления, другая - примыкает к краю углубления, в боковой части углубления сформированы калибровочная ступень калибровочной высоты из счетного количества высокой плотности моноатомных ступеней и средство, обеспечивающее определение калибровочной высоты калибровочной ступени, из того же счетного количества моноатомных ступеней, но меньшей плотности, при этом для опорных поверхностей характерна субангстремная шероховатость и достаточные для оптических измерений размеры.

Изобретение относится к измерительной технике и предназначено для обнаружения дефектов поверхности катания железнодорожных колес в движении. Сущность: на участке пути на рельс на середине высоты устанавливают тензодатчики парами симметрично с двух сторон шейки рельса и ориентируют вертикально.

Использование: для создания датчиков контроля толщины тонкопленочных диэлектрических материалов. Сущность изобретения заключается в том, что датчик контроля толщины тонкопленочных диэлектрических материалов содержит электроды, выполненные в виде двух плоских гребенок, имеющих зубья и основание в виде плоских прямоугольников, соединенных между собой и нанесенных на плоское диэлектрическое основание датчика, зубья одной гребенки входят в зазоры между зубьями второй гребенки с образованием равномерно чередующихся зубьев и зазоров между ними, ширина зазора между зубьями равна ширине зуба, при этом упомянутые электроды включены в схему измерения емкости между этими электродами, где с двух диаметрально расположенных углов датчика установлены дополнительные электроды таким образом, что на каждом упомянутом углу располагаются, по меньшей мере, два плоских Г-образных электрода, при этом внутренний Г-образный электрод образован зубом и основанием соответствующей плоской гребенки.

Использование: для создания датчиков контроля толщины осадка в осадкообразующих жидкостях. Сущность изобретения заключается в том, что датчик контроля толщины осадка содержит электроды, выполненные в виде двух плоских гребенок, имеющих зубья и основание в виде плоских прямоугольников, соединенных между собой и нанесенных на плоское диэлектрическое основание датчика, зубья одной гребенки входят в зазоры между зубьями второй гребенки с образованием равномерно чередующихся зубьев и зазоров между ними, ширина зазора между зубьями равна ширине зуба, погружаемые в сосуд с жидкостью, образующей осадок, электроды включены в схему измерения емкости между этими электродами, где с двух диаметрально расположенных углов датчика установлены дополнительные электроды таким образом, что на каждом упомянутом углу располагаются по меньшей мере три плоских Г-образных электрода, при этом внутренний Г-образный электрод образован зубом и основанием соответствующей плоской гребенки.

Данное изобретение относится, в целом, к области абразивной подготовки поверхности, а более конкретно к способам и устройству измерения профиля подготовленной поверхности.

Использование: для изготовления иглы кантилевера сканирующего зондового микроскопа. Сущность изобретения заключается в том, что для изготовления иглы кантилевера используют хрупкую прозрачную подложку, которую заполняют оптически прозрачной жидкостью и в горизонтальном положении укладывают в пластическую массу, которую периодически замораживают и размораживают.

Изобретение относится к измерительной технике. Устройство используют для контроля отклонения от прямолинейности поверхности боковой рабочей грани головки рельса в горизонтальной плоскости и поверхности катания головки рельса в вертикальной плоскости бесконтактным методом.

Изобретение относится к машиностроению, в частности к способам изучения процесса износа поверхностей деталей машин. Сущность: подают ток на контактирующие детали, нагруженные в соответствии с реальными условиями эксплуатации.

Изобретение относится к технической диагностике и может быть использовано для обнаружения дефектов поверхности катания колес железнодорожных транспортных средств в движении.

Изобретение относится к методам неразрушающего контроля металлических труб и может быть использовано для контроля их внутреннего диаметра. Сущность: внутри трубы размещают две пары расположенных соосно на фиксированном расстоянии один от другого накладных вихретоковых преобразователей при ортогональности общих осей каждой пары преобразователей.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве, в том числе при их производстве, например, по методу центробежного литья на металлургических, машиностроительных предприятиях.

Изобретение относится к области нефтегазовой промышленности и может быть использовано для измерения диаметра буровых скважин, а также их глубины. Технический результат: сокращение числа потребных спускоподъемных операций и повышение надежности каверномера.

Изобретение может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб на металлургических, машиностроительных предприятиях, в том числе при их производстве, например, по методу центробежного литья.

Изобретение относится к области геофизических исследований глубоких и сверхглубоких скважин, может быть использовано в многорычажных профилемерах-сканерах для детального контроля качества внутренней поверхности обсадных колонн.

Изобретение относится к области нефтяной промышленности, а именно к устройствам для определения внутреннего диаметра труб, размещенных в скважине, необходимых для диагностики состояния труб в скважине и позволяющих в сочетании с данными других измерений определить остаточную толщину стенок трубы.

Изобретение относится к устройствам для измерения внутреннего диаметра тонкостенных цилиндрических оболочек и может быть использовано в промышленности при проверке качества серийных изделий.

Изобретение относится к измерительной технике, а именно к области измерения параметров глубоких отверстий. .

Изобретение относится к устройствам для внутритрубного неразрушающего контроля трубопроводов, а именно для контроля профиля полости уложенных магистральных нефтегазопродуктопроводов путем пропуска внутри контролируемого трубопровода устройства с установленными на корпусе средствами измерения дефектов полости трубопровода, средствами обработки и хранения данных измерений, продвигающегося внутри трубопровода за счет транспортируемого по трубопроводу потока жидкости (газа).

Изобретение относится к неразрушающему контролю и может быть использовано для измерения внутреннего диаметра полых электропроводящих объектов. .

Изобретение относится к трубопроводному транспорту и может быть использовано для внутритрубной диагностики при строительстве и капитальном ремонте объектов, имеющих трубопроводную обвязку.
Наверх