Способ упрочнения твердых сплавов



Способ упрочнения твердых сплавов
Способ упрочнения твердых сплавов
Способ упрочнения твердых сплавов
Способ упрочнения твердых сплавов
Способ упрочнения твердых сплавов
Способ упрочнения твердых сплавов
C21D1/72 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2693238:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Оренбургский государственный университет" (RU)

Изобретение относится к способу упрочнения твердого сплава и может найти применение в машиностроении при изготовлении изделий порошковой металлургии из твердых сплавов, применяемом для холодной и горячей механической обработки металлов и сплавов, например, резанием. Технический результат заключается в упрощении технического процесса ионного азотирования твердых сплавов и увеличении стойкости сплава. Для твердого сплава , полученного спеканием при температуре 1400-1650°C с последующим охлаждением, после спекания проводят ионное азотирование в вакуумной печи в среде диссоциированного аммиака при температуре 540-800°C и давлении 5 Па. 1 ил., 4 табл.

 

Изобретение относится к области машиностроения, преимущественно к химико-термической обработке изделий порошковой металлургии, в частности к изделиям из твердых сплавов, применяемым для холодной и горячей механической обработки металлов и сплавов, например, резанием.

Известен способ азотирования с последующим вакуумным отжигом сплава на основе ВТ-1 [Титан и его сплавы. Сборник. - М., 1960. - Вып. 3, с. 172], при котором образцы из сплава ВТ-1 с цилиндрической рабочей частью диаметром 5 мм азотируют в азоте при 950°C в течение 30 ч, затем отчигают в вакууме при 800°C в течение 2 ч. Недостатком известного способа являются снижение поверхностной твердости в результате вакуумного отжига.

Наиболее близким к заявляемому способу является способ получения высокопрочных и износостойких покрытий на изделиях из тугоплавких металлов и их сплавов (на примере ВКЗМ), полученных при обработке в засыпке гидрида при давлении 100,0 МПа и 1100°C. Длительность выдержки составляла два часа. После проведения обработки глубина упрочненного слоя составляла 0,8 мм при твердости на поверхности 2150 ед. HV. Твердость неазотированной сердцевины составляла 1500 ед. HV [Патент N 2156320, МКИ C23C 8/24, опубл. 20.09.2000].

Недостатками известного способа являются:

- сложность процесса, высокое давление и температуры в камере газостата;

- низкая стойкость режущих пластин из твердых сплавов к воздействию ударных нагрузок.

Заявляемое изобретение направлено на упрощение технического процесса ионного азотирования: снижение температур ионного азотирования, отсутствием применения засыпаемых порошков, увеличение стойкости.

Техническим результатом предлагаемого изобретения является упрощение технического процесса ионного азотирования твердых сплавов, увеличение стойкости.

Техническая задача решается тем, что в способ упрочнения твердых сплавов включают спекание твердых сплавов при температуре 1400°C-1650°C, охлаждение, отличающийся тем, что после спекания проводят ионное азотирование в вакуумной печи в среде диссоциированного аммиака при температуре 540°C-800°C, ионное азотирование проводят при давлении 5 Па.

Для пояснения способа на фиг. 1 показан внешний вид твердосплавного инструмента после ионного азотирования чашечный резец марки RPUX 2709 М0 TN, Т14К8 (а) и твердосплавная четырехгранная пластина Т15К6 (б), увеличение 1:1.

Способ осуществляют следующим образом:

Спекание твердых сплавов при температуре 1400°C-1650°C, охлаждение, отличающийся тем, что после спекания проводят ионное азотирование в вакуумной печи в среде диссоциированного аммиака при температуре 540°C-800°C, ионное азотирование проводят при давлении 5 Па.

Ионное азотирование проводят в следующей последовательности. Прогревают твердосплавный инструмент и приспособление ацетоном ГОСТ 2603-79 безворсной салфеткой, сушат на воздухе 20 минут. Перед началом работы в вакуумной печи НТВ 6/6-1 промеряют натекание течеискателем ПТИ-10 и включают газовый блок, температура диссоциатора 850±10°C. Собирают термопарный узел и укрепляют его на контрольном образце. Размещают образцы пластин на столе в печи, загерметизируют, продувают печь диссоциированным аммиаком методом наполнения, остаточное давление 6,665 Па. Для очистки детали подают напряжение 300-400 В и вызывают тлеющий разряд. Постепенно (по мере очистки) увеличивают напряжение до 500 В. Время очистки 1 час. Продувают печь диссоциированным аммиаком. Нагревают до температуры изотермической выдержки в течение 1 часа, постепенно увеличивая напряжение и давление газа. Рабочая среда в камере: аммиак диссоциированный, давление - 533,2-799,4 Па. Ток I - (84-100 мА), напряжение U - 350-450 в. Охлаждают садку, не снимают разряд, до 280°C в течение 1 часа. Затем отключают подачу газа. Проводят вакуумирование камеры нагрева до 6,665 Па. Охлаждают детали в вакууме до t≤30-40°C (2-3 ч). Разгерметизирывают печь, выгружают образцы. Время цикла (без изотермической выдержки) - 4 часа.

Проводят ионное азотирование твердосплавных образцов при температуре 540°C - 1, 2, 4, 8 и 16 часов, а также при температурах - Т=600°C, 650°C, 700°C, 800°C, время изотермической выдержки - 1 и 2 часа.

До ионного азотирования определяют твердость, микротвердость результаты представлены в таблице 1, после ионного азотирования также определяют твердость, микротвердость результаты представлены в таблице 2 и предел прочности при изгибе представлены в таблице 3.

Анализы результатов показывают, что износ при резании уменьшается от 2 до 8 раз. При числе проходов 10 для твердого сплава Т14К8 (при температуре 540°C - время 16 часов) износ по передней поверхности уменьшаются примерно в 10 раз, а по задней поверхности примерно в 6 раз, а для Т15К6 - в 16 и 6 раз при температуре 800°C - 8 часов, принимаются уменьшение износа в среднем в 8 раз.

Анализируют результаты проведенных экспериментальных работ в таблице 4 по повышению физико-механических свойств твердых сплавов группы ТК и проводят сравнение с прототипом. Выполняют ионное азотирование с нагревом образцов в диссоциированном аммиаке при температуре 540°C - 1, 2, 4, 8 и 16 часов, а также при температурах - Т=600°C, 650°C, 700°C, 800°C, время изотермической выдержки - 1 и 2 часа.

Твердость увеличивают от 10 до 20%, прочность от 10% до 20%, коэффициент стойкости увеличивают в 6-8 раз.

Способ упрочнения твердого сплава, полученного спеканием, включающий спекание при температуре 1400 - 1650°С и охлаждение, отличающийся тем, что после спекания осуществляют ионное азотирование в вакуумной печи в среде диссоциированного аммиака при температуре 540 - 800°С и давлении 5 Па.



 

Похожие патенты:

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, работающих в условия износа, в медицине и других отраслях промышленности.

Изобретение относится к способу и устройству для термохимического упрочнения деталей. Упомянутый способ включает по меньшей мере одну стадию науглероживания в углеродсодержащей газовой атмосфере с давлением менее 50 мбар, причем детали выдерживают при температуре от 900 до 1050°С, и по меньшей мере одну стадию азотирования в азотсодержащей газовой атмосфере с давлением менее 50 мбар, причем детали выдерживают при температурах от 800 до 1050°С, азотсодержащая газовая атмосфера содержит молекулярный азот (N2) в качестве донорного газа и возбуждается посредством разрядной плазмы.

Изобретение относится к упрочнению поверхности изделий из титана и титановых сплавов путем ионно-плазменного азотирования и может быть использовано в авиакосмической отрасли, машиностроении, медицине и других отраслях.

Изобретение относится к области металлургии, в частности к плазменной химико-термической обработке титановых сплавов, и может быть использовано в машиностроении для повышения износостойкости и коррозионной стойкости деталей машин.

Изобретение относится к химико-термической обработке и может быть использовано в машиностроении и других областях промышленности. Способ обработки поверхности стального изделия включает проведение интенсивной поверхностной пластической деформации и ионное азотирование.

Изобретение относится к нанесению покрытия на поверхность стального изделия, применяемого для защиты от эрозионного износа рабочих лопаток влажнопаровых ступеней турбин, эксплуатирующихся в экстремальных условиях.

Изобретение относится к области машиностроения, в частности к ионной химико-термической обработке металлических изделий. Способ циркуляционного ионного азотирования металлического изделия в азотной среде под воздействием коронного разряда, включает проведение ионизации азота при давлении от 105 до 106 Па и температуре от 500 до 900°С под воздействием коронного разряда, образованного при напряжении на чередующихся коронирующих электродах от 20 до 40 кВ и токе на каждом из коронирующих электродов от 100 до 300 мкА, и осуществление циркуляции азотной смеси с помощью чередующихся коронирующих электродов с острыми коронирующими кромками, подключенных к высоковольтному источнику напряжения.

Изобретение относится к металлургии, а именно к способам получения имплантатов из титановых сплавов с остеоинтегрирующим покрытием. Способ получения высокопористого остеоинтегрирующего покрытия на имплантатах из титановых сплавов включает термодиффузионное водородное насыщение имплантата и вакуумный отжиг.

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для локального поверхностного упрочнения материалов.

Изобретение относится к области металлургии, а именно к химико-термической обработке, и может быть использовано при изготовлении деталей из конструкционных сталей, работающих в условии коррозии.

Изобретение относится к области металлургии, а именно к устройствам из материала с обратимой памятью формы, и может быть использовано в микромеханике, медицине, радиотехнике и т.д.

Изобретение относится к термомеханической обработке титановых сплавов для медицины, а именно к созданию способа получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий, и может быть использовано для изготовления костных имплантатов.

Изобретение относится к способам обработки титановых сплавов давлением, содержащих алюминий, ванадий, и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава методом горячего деформирования, используемой для аддитивной технологии.

Изобретение относится к металлургии, а именно к ультразвуковым технологическим системам, и может быть использовано для создания ультразвуковых электродов, обладающих высоким ресурсом работы.

Изобретение относится к области металлургии титановых сплавов и может быть использовано для получения листового проката из высоколегированного (α+β)-титанового сплава марки ВТ8.

Изобретение относится к области специальной металлургии и может быть использовано для получения высококачественных сплавов на основе ванадия, содержащих не более 10 мас.% титана и хрома в соотношении 0,8-1,2.

Изобретение относится к способам обработки титановых сплавов давлением, содержащих алюминий, ванадий, и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава методом горячего деформирования, используемой для аддитивной технологии.

Изобретение относится к способам обработки титановых сплавов давлением может быть использовано при изготовлении проволоки из (α+β)-титанового сплава методом горячего деформирования.

Изобретение относится к области металлургии, а именно к способам обработки титановых сплавов. Способ обработки заготовки из титанового сплава включает этапы бета-отжига заготовки, охлаждения заготовки до температуры ниже температуры бета-перехода титанового сплава и всестороннюю ковку заготовки.

Изобретение относится к области металлургии, а именно к способам обработки титановых сплавов. Способ обработки заготовки из титанового сплава включает этапы бета-отжига заготовки, охлаждения заготовки до температуры ниже температуры бета-перехода титанового сплава и всестороннюю ковку заготовки.

Изобретение относится к области машиностроения, в частности к обработке лазером при изготовлении и ремонте различных машин и механизмов. Способ упрочнения режущего инструмента из карбидсодержащих сплавов методом непрерывного лазерного воздействия, включающий лазерную обработку с использованием лазера непрерывного воздействия при плотности мощности лазерного излучения 2⋅106 Вт/м2, скорости распространения лазерного луча в пределах 2⋅10-2±1⋅10-2 м/с, при этом диаметр луча выбирают от 1,5⋅10-3 до 2,5⋅10-3 м, а расстояние от режущей кромки до места облучения от 1 до 1,5 мм, причем перед непрерывным лазерным воздействием производят карбонитрацию в ванне карбонитрации при температуре от 540°С до 580°С в расплаве солей на основе 20% цианата калия KCNO и калия углекислого CK2O3 - 80% поташа К2СО3 с выдержкой в течение 30 мин.
Наверх