Электролит для электрохимикомеханического упрочнения сталей



Владельцы патента RU 2694683:

Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации (RU)
Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации (RU)

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, нефте- и газодобывающей, нефтехимической и химической отраслях промышленности. Электролит включает гидроксид калия, натриевое жидкое стекло, пероксид водорода и воду, при этом он дополнительно содержит серпентин дисперсностью 5-40 мкм и наноуглеродный порошок дисперсностью 8-15 нм при следующем соотношении компонентов, г/л: гидроксид калия 2-3, натриевое жидкое стекло 8-10, пероксид водорода 2,5-10, серпентин 10-30, наноуглеродный порошок 10-15 и воду - остальное. Технический результат: повышение противоизносных, противозадирных свойств и прочности покрытия. 1 табл.

 

Изобретение относится к электрохимикомеханическому формированию износостойких покрытий на стальных поверхностях, в частности методом электрохимикомеханического упрочнения, и может быть использовано в машиностроении, в нефте- и газодобывающей, нефтехимической и химической отраслях промышленности.

Известен электролит для электрохимикомеханического упрочнения, содержащий соединение: натриевое жидкое стекло 40% в воде [1].

Однако покрытия, сформированные в указанном электролите, имеют невысокие показатели противоизносных и антифрикционных свойств.

Известен щелочной электролит для микродугового анодирования алюминия и его сплавов [2], включающий гидроксид калия, натриевое жидкое стекло и пероксид водорода.

Однако известный электролит позволяет формировать износостойкое покрытие, обладающее невысокими антифрикционными свойствами, что повышает износ сопрягаемой с ним детали в сопряжении.

Наиболее близким к предлагаемому изобретению по составу компонентов и признаков является электролит для получения антифрикционного износостойкого покрытия [3], включающий гидроксид калия, натриевое жидкое стекло, пероксид водорода и дисульфид молибдена дисперсностью 5-50 мкм при следующем соотношении компонентов, г/л: гидроксид калия - 2-3, натриевое жидкое стекло - 8-10, пероксид водорода - 2,5-10, дисульфид молибдена - 15-25, вода - остальное.

Однако известный электролит не позволяет получить покрытие с достаточно хорошими противозадирными, антифрикционными и противоизносными свойствами при электрохимикомеханическом упрочнении.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Технической задачей, на решение которой направлено изобретение, является повышение противоизносных, противозадирных свойств и прочности покрытия. Улучшение этих свойств позволяет повысить ресурс трущихся деталей в сопряжении и уменьшить потери на трение.

Поставленная задача достигается тем, что в известный электролит для электрохимикомеханического упрочнения сталей, в состав которого входят гидроксид калия, натриевое жидкое стекло, пероксид водорода и вода, дополнительно вводят наноуглеродный порошок дисперсностью 8-15 нм, и серпентин дисперсностью 10-40 мкм, при следующем соотношении компонентов, г/л: натриевое жидкое стекло - 8-10, пероксид водорода - 2,5-10, гидроксид калия - 2-3, наноуглеродный порошок - 5-10, серпентин - 10-30, вода - остальное.

Для получения электролита были приготовлены 5 смесей компонентов, содержащие каждая (в г/л): гидроксид калия - 2,5, натриевое жидкое стекло - 8,5, пероксид водорода - 6,5, наноуглеродный порошок - 5-10, остальное вода отличающиеся друг от друга содержанием серпентина, равным в каждом электролите последовательно (в г/л) 10, 20, 30.

Электролит представляет собой водный раствор гидроксида калия (марки "ч", ГОСТ 9285-78), натриевого жидкого стекла (ГОСТ 13078-81, модуль = 3,0-3,4; плотность = 1,4-1,5 г/см3), пероксида водорода (30%-ный водный раствор), наноуглеродного порошка дисперсностью 8-15 нм, серпентина дисперсностью до 40 мкм. Электролиты готовили простым смешиванием компонентов.

Практическое применение иллюстрируется следующим примером, в котором проводили электрохимикомеханическое упрочнение дорожек качения подшипников в среде электролитов. Для проведения испытаний использовались серийные конические подшипники 7308 ГОСТ 27365-87, у которых предельно предельная частота вращения при пластичном смазочном материале nпред=4500 об/мин, а динамическая грузоподъемность С=66000Н, статическая грузоподъемность Со=47500Н. В качестве смазки использовался ЦИАТИМ-201 ГОСТ 6261-1А с температурой каплепадения tк=173°С. Упрочнение дорожек качения проводили на 6 подшипниках: 3 подшипника упрочняли в среде электролита с содержанием серпентина, равным в каждом последовательно (в г/л) 10, 20, 30 и 3 подшипника упрочняли в электролите по [3]. Режим упрочнения следующий: усилие прижатия меднографитного анода к обрабатываемой поверхности (дорожке качения) 20-40 МПа, линейная скорость обрабатываемой поверхности 0,1-0,4 м/с, плотность тока, проходящего по цепи анод - деталь 0,8-1 А/мм2, поступательное перемещение вдоль обрабатываемой поверхности 0,5-2,5 мм/об, время обработки составило: 40 сек кольцо внутреннее, 50 сек кольцо наружное [1].

Стендовые трибологические испытания подшипников проводили на машине трения СМТ-2 по схеме "вал-втулка" с загрузочным устройством для создания радиальной и осевой нагрузки [4]. Испытания подшипников проводились при радиальной нагрузке Fr=5 кН, осевой нагрузке Fa=2,5 кН, частоте вращения 1500 об/мин, на пути трения 100 км. Повторяемость всех опытов - четырехкратная. Интенсивность изнашивания определялась весовым методом. Величина весового износа измерялась на аналитических весах ВЛР-200 с точностью до 0,05 мг. Полученные данные обработаны и результаты приведены в таблице.

Представленные в табл.результаты сравнительных испытаний позволяют заключить, что наилучшую износостойкость имеют покрытия, получаемые в электролите, с содержанием концентрацией серпентина от 10-30 г/л, максимальное повышение износостойкости достигается с концентрацией серпентина 20 г/л, что уменьшает интенсивность изнашивания упрочненных подшипников в среднем в 2 раза по сравнению с подшипниками упрочненными электролитом по [3].

Источники информации

1. Макаренко Н.Г. Электрохимическое упрочнение и восстановление деталей трибосистем / Н.Г. Макаренко, - Научное издание. - Омск: «Омский научный вестник», 2004. - С. 113-116, С. 170-178.

2. А.с. SU 1767044, C25D 11/06.

3. П. RU 2198249, C25D 11/02.

4. Гаркунов Д.Н. Триботехника (конструирование, изготовление и эксплуатация машин): Учебник. - 5-е изд., перераб. и доп. - М.: «Издательство МСХА», 2002. 632 с., ил. 250. ISBN 5-94327-093-0

Электролит для электрохимикомеханического упрочнения сталей, включающий гидроксид калия, натриевое жидкое стекло, пероксид водорода и воду, отличающийся тем, что он дополнительно содержит серпентин дисперсностью 5-40 мкм и наноуглеродный порошок дисперсностью 8-15 нм, при следующем соотношении компонентов, г/л:

гидроксид калия 2-3
натриевое жидкое стекло 8-10
пероксид водорода 2,5-10
серпентин 10-30
наноуглеродный порошок 10-15
вода остальное



 

Похожие патенты:

Изобретение относится к области гальванотехники и может быть использовано для восстановления изношенных стальных деталей. Способ включает помещение восстанавливаемой детали и растворимого анода в электролитическую ячейку, подключение их к источнику тока плотностью более 1 кА/дм2, прокачку через электролитическую ячейку электролита, содержащего твердые дисперсные частицы размером 100-300 мкм, при скорости гетерофазного потока 9-11 м/с, при этом в электролит дополнительно вводят твердые дисперсные частицы размером 1-10 мкм, при этом используют электролит, содержащий серную кислоту, при следующем соотношении компонентов, г/л: железо хлористое FeCl2⋅4H2O 380-420, кислота соляная HCl рН=0,8-1,0, кислота серная H2SO4 1-3.

Изобретение относится к области гальванотехники. Способ включает получение цинк-наноалмазного электрохимического покрытия из цинкатного электролита, содержащего детонационные наноалмазы, при этом в качестве детонационных наноалмазов используют допированные бором детонационные наноалмазы с размером частиц 4-6 нм, покрытие осаждают из цинкатного электролита, содержащего, г/л: окись цинка 10-14, едкий натр 100-130, добавку Chemeta Al-DM 8-12 мл/л и детонационные наноалмазы, допированные бором, 0,5-10,0, при плотности тока 1-5 А/дм2 и перемешивании.

Изобретение относится к области гальванотехники, а именно: к способам получения композиционных электролитических покрытий. Установка содержит ванну с рабочими электродами, блоки электропитания, систему циркуляции электролита, насос и перфорированный трубопровод, при этом дно ванны выполнено в виде четырехгранного конуса и снабжено ультразвуковыми излучателями, а в качестве насоса для перекачки электролита-суспензии используется насос-гомогенизатор, при этом перфорированный трубопровод расположен над поверхностью ванны, а используемые аноды выполнены перфорированными.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, в ювелирной промышленности в качестве некорродирующей основы для золочения и серебрения и может конкурировать с хромовым электрохимическим покрытием.

Изобретение относится к области гальванотехники и может быть использовано для получения медных пленок с повышенными прочностными свойствами. Способ включает приготовление водного раствора сульфата меди с добавлением этилового спирта до концентрации 37,5-41,5 мл/л и последующим подкислением до значения pH не выше 1, приготовление суспензии графена, содержащей графит-графеновую смесь графеновой фракции с водным раствором полиакриловой кислоты в весовом соотношении вода/графит-графеновая смесь/раствор полиакриловой кислоты = 1/(6-8)·10-3/(6-6,5)·10-4, которую диспергируют в течение 15-20 минут, после чего диспергированную суспензию графена в количестве 0,1 г/л добавляют в сернокислый электролит, собирают ячейку с соотношением площади поверхности анода к площади поверхности катода, равным (10-15):1, и помещают электроды в сернокислый электролит, затем осуществляют осаждение меди при постоянном токе плотностью 0,4-0,5 А/см2 в течение 120-150 минут, после чего электроды осушают, а осажденную пленку отделяют от катода.
Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и других областях техники. Способ заключается в том, что покрытие осаждают из электролита, содержащего 200-300 г/л хромового ангидрида, 0,5-10 г/л серной кислоты и 1-50 г/л дисперсной фазы из ряда, включающего нитрид титана, нитрид бора и карбид вольфрама, с применением периодических импульсов катодного тока от 500 до 2000 А/дм2 с частотой от 0,005 Гц до 0,023 Гц и продолжительностью от 0,5 до 10 с, при этом в промежутке между импульсами осаждение проводят при плотности катодного тока в диапазоне от 40 до 70 А/дм2.

Изобретение относится к области гальванотехники и может быть использовано при изготовлении алмазных инструментов. Способ включает крепление на рабочей части заготовки инструмента алмазных зерен и их заращивание гальванической связкой, при этом алмазные зерна заращивают никелевой гальванической связкой, причем в электролит никелирования добавляют с помощью ультразвукового диспергатора углеродные нанотрубки «Таунит» в виде порошка, при следующем соотношении компонентов, г/л: сульфат никеля (II) 250-260; хлорид никеля (II) 60-7; пероксоборная кислота 30-40; углеродные нанотрубки «Таунит» 0,1-0,15.

Изобретение относится к области гальванотехники, в частности к анодированию поверхности алюминия и его сплавов, и может быть использовано в различных областях промышленности для увеличения коррозионной стойкости, микротвердости изделий с покрытиями и создания подслоя для лаков и красок.

Изобретение относится к области гальванотехники и может быть использовано для модификации медных гальванических покрытий. Способ включает введение в сульфатный электролит меднения наночастиц меди, полученных электроэрозионным диспергированием медных отходов, размерностью 2,5-100 нм с концентрацией до 0,1 г на 100 мл электролита.

Изобретение относится к области порошковой гальванотехники, а именно: к материалам для получения композиционных гальванических покрытий, и может быть использовано для создания износостойких покрытий в условиях массового, серийного и единичного производства.

Изобретение относится к получению наноструктурированных титан-оксидных пленок для солнечных элементов. Способ включает нанесение гидрозоля диоксида титана на подложку, сушку с образованием пленки и ее прокаливание.

Изобретение относится к химико-фармацевтической промышленности. Способ получения частиц для лечения гинекологических и проктологических заболеваний, сопровождающихся окислительным стрессом, включает смешение буферных растворов антиоксидантного фермента супероксиддисмутазы (СОД) и поликатиона, выбранного из протамина, полилизина и полиаргинина, перемешивание и выдерживание полученной смеси с последующими добавлением в нее буферного раствора полианиона блок-сополимера полиглутаминовой кислоты и полиэтиленгликоля или блок-сополимера полиаспарагиновой кислоты и полиэтиленгликоля, перемешивание и выдерживание полученной смеси, добавление в нее водного раствора глутарового альдегида, выдерживание смеси, добавление в смесь водного раствора боргидрида натрия и очистку смеси с использованием мембранной фильтрующей системы и отличается тем, что глутаровый альдегид добавляют в количестве, обеспечивающем его мольное соотношение с аминогруппами поликатиона 0,3-1,5, и используют фильтрующую систему с пределом пропускания 90-130 килодальтон, причем после очистки смеси проводят ее лиофильную сушку.

Изобретение относится к области оптических сенсоров, определяющих молекулярный состав вещества методом гигантского комбинационного рассеяния света. Сенсорный элемент для селективного усиления сигнала гигантского комбинационного рассеяния света от анализируемых веществ состоит из зеркальной металлической пленки, наноструктурированного диэлектрического слоя, металлических наночастиц, расположенных на поверхности диэлектрического слоя.

Группа изобретений относится к нетканым материалам на основе ультратонких полимерных волокон. Текстильный многослойный нетканый материал получают методом электропрядения путем послойного нанесения на единую основу электропрядных волокон из прядильных растворов в нескольких модулях, который отличается тем, что многослойная мембрана состоит из слоев с градиентным увеличением диаметров волокон по толщине мембраны от внутреннего слоя к наружному в среднем от 1,3 до 3-х раз, и поры (межволоконные каналы), пронизывающие всю мембрану по толщине, имеют «воронкообразную» форму с градиентным расширением от внутреннего слоя к наружному с кратностью расширения от 1,5 до 4-х раз.

Использование: для формирования массивов наночастиц золота на поверхности кремниевых пластин. Сущность изобретения заключается в том, что способ осаждения коллоидных наночастиц золота на поверхность кремниевых полупроводниковых пластин заключается в том, что наночастицы, имеющие в коллоидном растворе отрицательный заряд, могут быть нанесены на поверхность кремниевых пластин благодаря проведению процессов их предварительной ионно-плазменной обработки, вследствие которых на поверхности пластин возникает положительный заряд.
Изобретение относится к способу получения нанокапсул витамина PP в гуаровой камеди. Способ характеризуется тем, что витамин РР добавляют в суспензию гуаровой камеди в бутаноле в присутствии поверхностно-активного вещества, в качестве которого используют препарат Е472с, при перемешивании 800 об/мин, после чего добавляют хладон-113.

Изобретение относится к области медицины и фармацевтики, а именно к противоопухолевому средству на основе биодеградируемых наночастиц, несущих рекомбинантный фактор некроза опухоли альфа человека, содержащему сферические наночастицы, имеющие размер порядка 50-70 нм, имеющие ядро, состоящее из полинуклеотидного комплекса, представляющего собой двуспиральную РНК из дрожжей Saccharomyces cerevisiae - индуктор интерфероногенеза, и покрытое слоем конъюгата спермидина с полиглюкином, удерживаемого за счет ионного взаимодействия между отрицательно заряженным полинуклеотидным комплексом и положительно заряженным спермидином, и рекомбинантный фактор некроза опухоли альфа человека, ковалентно связанный с активированным периодатом натрия полиглюкином, причем на одну молекулу двуспиральной РНК из дрожжей Saccharomyces cerevisiae приходится 60-80 молекул рекомбинантного человеческого ФНО-альфа с цитолитической активностью не ниже 106 МЕ/мг белка, 60-80 молекул полиглюкина и 1000-1300 молекул спермидина, отличающемуся тем, что средство содержит полисахарид маннитол, молекулы которого расположены в лиофилизате между биодеградируемыми наночастицами, несущими ФНО-альфа с цитолитической активностью не менее 106 ME, при следующем количественном содержании компонентов в 1 дозе сухого противоопухолевого средства: маннитол 30,0-50,0 мг, лиофилизат, содержащий наночастицы, несущие ФНО-альфа с цитолитической активностьюне менее 106 МЕ, 37,5-61,5 мг.

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе карбида кремния для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов.

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе карбида кремния для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов.

Изобретение относится к химической промышленности и нанотехнологии и может быть использовано при изготовлении энергетических материалов, датчиков, биосенсоров, бумаги.
Наверх