Способ демодуляции сигнала фазового оптического датчика

Изобретение относится к области оптических способов измерения физических величин с использованием фазовых оптических датчиков (интерферометров), в том числе для измерения механических и акустических колебаний, а также линий сбора данных на их основе. Заявленный способ демодуляции сигнала фазового оптического датчика включает дополнительную модуляцию разности фаз в фазовом оптическом датчике пилообразным сигналом, преобразование сигнала фазового оптического датчика осуществляют с частотой в четыре раза больше частоты модуляции разности фаз в фазовом оптическом датчике, формируют тройки и четверки отсчетов из отсчетов сигнала фазового оптического датчика каждого периода дополнительной модуляции разности фаз, после чего вычисление искомой разности фаз ведут по каждой тройке по формулам:

где:

ϕc – искомая разность фаз,

,

,

где: u(0), u(1), u(2) – значения отсчетов в тройке, измеренные при значениях дополнительной пилообразной модуляции разности фаз ϕ(0)=0, ϕ(1)=β и ϕ(2)=2β, β=ϕm/4 – приращение разности фаз между соседними отсчетами под действием дополнительной пилообразной модуляции разности фаз, ϕm – амплитуда дополнительной пилообразной модуляции разности фаз, ϕm < 4π. Причем для получения точных значений искомой разности фаз в случае отклонения реальной амплитуды дополнительной пилообразной модуляции разности фаз от заданного значения приращение разности фаз между соседними отсчетами вычисляется с использованием четверки отсчетов по формуле

,

где: u(0), u(1), u(2), u(3) – значения отсчетов сигнала фазового оптического датчика в четверке, измеренные при значениях дополнительной пилообразной модуляции разности фаз ϕ(0)=0, ϕ(1)=β, ϕ(2)=2β и ϕ(3)=3β. Для поддержания оптимального значения амплитуды дополнительной пилообразной модуляции разности фаз ϕm, равного 2π, используется сигнал ошибки, вычисляемый по формуле

S=ϕm-2π,

где:

S – сигнал ошибки, подаваемый на схему регулировки амплитуды дополнительной пилообразной модуляции разности фаз, ϕm - амплитуда дополнительной пилообразной модуляции разности фаз, вычисляемая по формуле

ϕm=4β,

где β – значение приращения разности фаз между соседними отсчетами под действием дополнительной пилообразной модуляции разности фаз, вычисленное с использованием четверки отсчетов по приведенной выше формуле. Технический результат - устранение ошибок, возникающих при демодуляции сигнала фазового оптического датчика в случае отклонения амплитуды модуляции от заданного значения. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к области оптических способов измерения физических величин с использованием фазовых оптических датчиков (интерферометров), в том числе для измерения механических и акустических колебаний, а также линий сбора данных на их основе.

Известно «Опросное устройство для волоконно-оптических линий с использованием двух склонов» [Патент US № 6778720]. Способ демодуляции сигнала, используемый в данном устройстве, включает вспомогательную модуляцию разности фаз световых волн в интерферометрах гармоническим сигналом, преобразование выходного сигнала фотоприемника, установленного на выходе линии, в последовательность цифровых отсчетов, выбор по пять отсчетов на каждом из двух склонов периодической зависимости сигнала от времени, вычисление по части выбранных отсчетов искомой разности фаз световых волн в интерферометре, вычисление амплитуды вспомогательной модуляции по остальным отсчетам и ее последующую регулировку. Недостатками данного способа являются сложность его реализации, использование в каждом цикле вычислений не менее десяти отсчетов сигнала, необходимость точного поддержания амплитуды вспомогательной модуляции и одинаковости разности плеч всех интерферометров, входящих в линию.

Известен «Четырехступенчатый дискретный способ демодуляции фазовых сдвигов для линий из волоконно-оптических датчиков» [Патент US № 6122057]. Способ включает вспомогательную фазовую модуляцию интерферометра гармоническим сигналом, формирование четырех сигналов, являющихся интегралами выходного сигнала фотоприемника в течение разных промежутков времени, преобразование интегральных сигналов в последовательности цифровых отсчетов, вычисление искомой разности фаз световых волн в интерферометре. Недостатками данного способа являются сложность его реализации, необходимость формирования четырех интегральных сигналов, дополнительного вычисления поправочного коэффициента для корректировки вычисленных значений разности фаз.

Известен «Способ и устройство демодуляции выходных сигналов интерферометра повышенной точности» [Патент US № 6556509]. Способ демодуляции включает модуляцию разности фаз световых волн в интерферометре по гармоническому закону с амплитудой, преобразование периодического сигнала, получаемого с фотоприемника, установленного на выходе интерферометра, (период сигнала равен периоду вспомогательной модуляции) в поток цифровых отсчетов с получением двенадцати отсчетов в течение каждого периода. Отсчеты регистрируются через равные промежутки времени, частота дискретизации в двенадцать раз выше частоты модуляции. Выбор в течение каждого периода сигнала шести отсчетов из двенадцати и вычисление по этим шести отсчетам значения искомой разности фаз один раз за период с использованием формул, полученных для амплитуды модуляции. После чего осуществляют вычисление по оставшимся шести отсчетам амплитуды модуляции, проверка равенства амплитуды значению радиан и корректировка амплитуды. Недостатками способа являются сложность расчетов, сложность реализации способа, необходимость точного поддержания амплитуды вспомогательной гармонической модуляции, равной π радиан, требование равенства разностей плеч всех интерферометров при использовании способа для демодуляции сигналов в линии из нескольких интерферометров.

Известен «Способ демодуляции сигнала волоконного интерферометра», выбранный за прототип [Патент РФ № 2470477]. Способ демодуляции сигнала волоконного интерферометра может быть использован в фазовых оптических датчиках и включает в себя модуляцию разности фаз в фазового оптического датчика гармоническим сигналом, преобразование полученного периодического сигнала фазового оптического датчика в последовательность цифровых отсчетов с частотой, в три раза превышающей частоту дополнительной модуляции разности фаз, формирование троек отсчетов из всех трех отсчетов каждого периода сигнала фазового оптического датчика, после чего вычисление искомой разности фаз ведут по каждой тройке по формулам:

где:

ϕc – искомая разность фаз, значения переменных a и b вычисляют по полученным значения отсчетов в тройке u(0), u(1), u(2), а также заданным значениям амплитуды модулирующего сигнала δϕm и фазовой задержки первого отсчета относительно начала периода модуляции θ0.

Недостатком прототипа является необходимость точного поддержания заданной амплитуды вспомогательной гармонической модуляции разности фаз и задержки первого отсчета относительно начала периода модуляции и появление значительных ошибок в результате демодуляции при отклонении амплитуды вспомогательной модуляции от заданного значения.

Задачей заявляемого способа демодуляции является устранение ошибок, возникающих при демодуляции сигнала фазового оптического датчика в случае отклонения амплитуды модуляции от заданного значения.

Для решения поставленной задачи предложено два варианта способа демодуляции сигнала фазового оптического датчика.

Первый вариант способа демодуляции сигнала фазового оптического датчика включает дополнительную модуляцию разности фаз в фазовом оптическом датчике пилообразным сигналом, преобразование сигнала фазового оптического датчика осуществляют с частотой в четыре раза больше частоты модуляции разности фаз в фазовом оптическом датчике, формируют тройки и четверки отсчетов из отсчетов сигнала фазового оптического датчика каждого периода дополнительной модуляции разности фаз, после чего вычисление искомой разности фаз ведут по каждой тройке по формулам:

где:

ϕc – искомая разность фаз,

,

,

где: u(0), u(1), u(2) – значения отсчетов в тройке, измеренные при значениях дополнительной пилообразной модуляции разности фаз ϕ(0)=0, ϕ(1)=β и ϕ(2)=2β,

β=ϕm/4 – приращение разности фаз между соседними отсчетами под действием дополнительной пилообразной модуляции разности фаз,

ϕm – амплитуда дополнительной пилообразной модуляции разности фаз, ϕm < 4π,

причем для получения точных значений искомой разности фаз в случае отклонения реальной амплитуды дополнительной пилообразной модуляции разности фаз от заданного значения приращение разности фаз между соседними отсчетами вычисляется с использованием четверки отсчетов по формуле

β,

где: u(0), u(1), u(2), u(3) – значения отсчетов сигнала фазового оптического датчика в четверке, измеренные при значениях дополнительной пилообразной модуляции разности фаз ϕ(0)=0, ϕ(1)=β, ϕ(2)=2β и ϕ(3)=3β.

Второй вариант способа демодуляции сигнала фазового оптического датчика включает дополнительную модуляцию разности фаз в фазовом оптическом датчике пилообразным сигналом, преобразование сигнала фазового оптического датчика осуществляют с частотой в четыре раза больше частоты модуляции разности фаз в фазовом оптическом датчике, формируют тройки и четверки отсчетов из отсчетов сигнала фазового оптического датчика каждого периода дополнительной модуляции разности фаз, после чего вычисление искомой разности фаз ведут по каждой тройке по формулам:

где:

ϕc – искомая разность фаз,

,

,

где: u(0), u(1), u(2) – значения отсчетов сигнала фазового оптического датчика в тройке, измеренные при значениях дополнительной пилообразной модуляции разности фаз ϕ(0)=0, ϕ(1)=β и ϕ(2)=2β,

β=ϕm/4 – приращение разности фаз между соседними отсчетами под действием дополнительной пилообразной модуляции разности фаз,

ϕm – амплитуда дополнительной пилообразной модуляции разности фаз, ϕm < 4π,

причем для получения точных значений искомой разности фаз в случае отклонения реальной амплитуды дополнительной пилообразной модуляции разности фаз от заданного значения приращение разности фаз между соседними отсчетами вычисляется с использованием четверки отсчетов по формуле

β,

где: u(0), u(1), u(2), u(3) – значения отсчетов сигнала фазового оптического датчика в четверке, измеренные при значениях дополнительной пилообразной модуляции разности фаз ϕ(0)=0, ϕ(1)=β, ϕ(2)=2β и ϕ(3)=3β,

а для поддержания оптимального значения амплитуды дополнительной пилообразной модуляции разности фаз ϕm, равного 2π, используется сигнал ошибки, вычисляемый по формуле

S=ϕm-2π,

где:

S – сигнал ошибки, подаваемый на схему регулировки амплитуды дополнительной пилообразной модуляции разности фаз,

ϕm - амплитуда дополнительной пилообразной модуляции разности фаз, вычисляемая по формуле

ϕm=4β,

где β – значение приращения разности фаз между соседними отсчетами под действием дополнительной пилообразной модуляции разности фаз, вычисленное с использованием четверки отсчетов по приведенной выше формуле.

Для демонстрации положительного эффекта, достигаемого при применении описанного способа демодуляции сигнала фазового оптического датчика, было проведено численное моделирование для набора значений искомой разности фаз ϕс, в качестве которого были выбраны 18 значений, равномерно распределенных в диапазоне [-180°; +180°], т.е. значения от -180° до +160° с шагом 20°. Моделирование проводилось при трех значениях амплитуды дополнительной пилообразной модуляции разности фаз ϕm: при оптимальном значении, равном 2π, а также при отличающихся от 2π на -10% и на +10%.

Для каждого значения искомой разности фаз ϕс при выбранных значениях амплитуды дополнительной пилообразной модуляции разности фаз ϕm рассчитывались четыре отсчета сигнала фазового оптического датчика в течение одного периода дополнительной пилообразной модуляции разности фаз {u(0), u(1), u(2) , u(3)} по формулам:

u(0) = 1+cos(ϕc),

u(1) = 1+cos(ϕcm/4),

u(2) = 1+cos(ϕcm/2),

u(3) = 1+cos(ϕc+3ϕm/4),

где:

ϕc – искомая разность фаз,

ϕm – амплитуда дополнительной пилообразной модуляции разности фаз.

В данных формулах предполагается, что амплитуда сигнала фазового оптического датчика равна 1, однако такой выбор не уменьшает общности полученных результатов, так как значение амплитуды не влияет на результат вычисления значения искомой разности фаз.

Далее для каждого набора отсчетов {u(0), u(1), u(2), u(3)} сигнала фазового оптического датчика по первой тройке значений u(0), u(1) и u(2) вычислялись значения искомой разности фаз ϕ'с по приведенным в описании способа формулам. В обозначении ϕ'с штрих используется для того, чтобы различать исходно заданные значения искомой разности фаз ϕc и значения, полученные в результате вычисления ϕ'с. Затем по всем четырем значениям u(0), u(1), u(2) и u(3) вычислялось значение β по формуле

β

и реальная амплитуда дополнительной пилообразной модуляции разности фаз ϕ'm=4β. Здесь штрих также используется для различения исходно заданного значения ϕm и значения ϕ'm, получаемого в результате вычислений.

Численное моделирование проводились для трех значений амплитуды дополнительной пилообразной модуляции разности фаз: ϕm1=6,28°радиан (значение, близкое к заданному оптимальному значению 2π), ϕm2=6,92°радиан (значение, превышающее 2π на 10%) и ϕm3=5,66°радиан (значение, меньшее 2π на 10%).

В ходе моделирования были проведены вычисления для 18-ти значений искомой разности фаз ϕc для трех значений амплитуды дополнительной пилообразной модуляции разности фаз ϕm1, ϕm2 и ϕm3. Во всех случаях рассчитанные значения искомой разности фаз ϕ'с оказались равными исходным ϕc. Разность ϕ'с–ϕс не превышала 1,3∙10–14, что определяется погрешностью, вызванной ограниченной при вычислениях разрядностью. Данные результаты подтверждают правильность вычисления искомой разности фаз по приведенным в описании первого и второго вариантов способа формулам в случае отклонения амплитуды дополнительной пилообразной модуляции разности фаз от заданного оптимального значения.

Вычисленные при моделировании при трех значениях амплитуды дополнительной пилообразной модуляции разности фаз ϕm и 18-ти значений искомой разности фаз ϕc значения амплитуды дополнительной пилообразной модуляции разности фаз ϕ'm1, ϕ'm2, ϕ'm3 отличались от соответствующих исходных значений ϕm1, ϕm2 или ϕm3 в пределах погрешности вычислений. Разности ϕ'm1–ϕm1, ϕ'm2–ϕm2, ϕ'm3–ϕm3 не превышали 7,2∙10–14, что определяется погрешностью, вызванной ограниченной при вычислениях разрядностью. Данные результаты подтверждают правильность работы второго варианта способа при вычислении амплитуды дополнительной пилообразной модуляции разности фаз и сигнала ошибки, подаваемого на схему регулировки амплитуды дополнительной пилообразной модуляции разности фаз с целью поддержания заданного оптимального значения амплитуды дополнительной пилообразной модуляции разности фаз ϕm, равного 2π.

Далее было проведено вычисление ошибок, возникающих при отклонении фактической амплитуды модуляции от заданной без использования предлагаемого способа демодуляции сигнала волоконного интерферометра. Для этого при вычислении отсчетов, моделирующих отсчеты реального сигнала фазового оптического датчика {u(0), u(1), u(2), u(3)} при отклонении амплитуды модуляции от заданной, использовались измененные на +10% и -10% значения амплитуды дополнительной пилообразной модуляции разности фаз ϕm2 или ϕm3, а при вычислении искомого значения разности фаз ϕ'c использовалось заданное оптимальное значение ϕm1, равное 2π. В этом случае отклонение рассчитанных значений искомой разности фаз ϕ'c от заданных значений ϕc достигало 14°. Результаты вычислений для этого случая приведены в таблице на с. 10.

Таким образом, результаты численного моделирования использования первого и второго вариантов способа демодуляции сигнала фазового оптического датчика демонстрируют увеличение точности вычисления искомой разности фаз в случае, когда амплитуда дополнительной пилообразной модуляции разности фаз отклоняется от заданного оптимального значения, а также правильность вычисления сигнала ошибки по формуле, приведенной в описании второго варианта способа, который может быть использован для поддержания оптимального значения амплитуды дополнительной пилообразной модуляции разности.

Таблица

ϕc, градусы Амплитуда +10%:
вычисление отсчетов с использованием значений ϕm2=1.1ϕm1,
вычисление ϕ'c с использованием ϕm1.
Амплитуда -10%:
вычисление отсчетов с использованием значений ϕm3=0.9ϕm1,
вычисление ϕ'c с использованием ϕm1.
ϕ'c,
градусы
ϕ'c – ϕc,
градусы
ϕ'c,
градусы
ϕ'c – ϕc,
градусы
1 -180 -169.277 10.723 -187.663 -7.663
2 -160 -146.762 13.238 -170.519 -10.519
3 -140 -126.348 13.652 -152.767 -12.767
4 -120 -107.949 12.051 -133.404 -13.404
5 -100 -90.702 9.298 -111.893 -11.893
6 -80 -73.506 6.494 -88.782 -8.782
7 -60 -55.248 4.752 -65.769 -5.769
8 -40 -35.031 4.969 -44.471 -4.471
9 -20 -12.672 7.328 -25.305 -5.305
10 0 10.723 10.723 -7.663 -7.663
11 20 33.238 13.238 9.481 -10.519
12 40 53.652 13.652 27.233 -12.767
13 60 72.051 12.051 46.596 -13.404
14 80 89.298 9.298 68.107 -11.893
15 100 106.494 6.494 91.218 -8.782
16 120 124.752 4.752 114.231 -5.769
17 140 144.969 4.969 135.529 -4.471
18 160 167.328 7.328 154.695 -5.305

1. Способ демодуляции сигнала фазового оптического датчика, включающий дополнительную модуляцию разности фаз в фазовом оптическом датчике, преобразование полученного периодического сигнала в последовательность цифровых отсчетов, вычисление искомой разности фаз, отличающийся тем, что дополнительную модуляцию разности фаз в фазовом оптическом датчике осуществляют пилообразным сигналом, преобразование сигнала фазового оптического датчика осуществляют с частотой в четыре раза больше частоты дополнительной модуляции разности фаз в фазовом оптическом датчике, формируют тройки и четверки отсчетов из отсчетов сигнала фазового оптического датчика каждого периода дополнительной модуляции разности фаз, после чего вычисление искомой разности фаз ведут по каждой тройке по формулам:

где:

ϕc – искомая разность фаз,

,

,

где: u(0), u(1), u(2) – значения отсчетов сигнала фазового оптического датчика в тройке, измеренные при значениях дополнительной модуляции разности фаз ϕ(0)=0, ϕ(1)= и ϕ(2)=2,

m/4 – приращение разности фаз между соседними отсчетами под действием дополнительной пилообразной модуляции разности фаз,

ϕm – амплитуда дополнительной пилообразной модуляции разности фаз, ϕm < 4π,

вычисляется с использованием четверки отсчетов по формуле

,

где: u(0), u(1), u(2), u(3) – значения отсчетов сигнала фазового оптического датчика в четверке, измеренные при значениях дополнительной модуляции разности фаз ϕ(0)=0, ϕ(1)= , ϕ(2)=2 и ϕ(3)=3.

2. Способ по п.1, отличающийся тем, что для поддержания заданного оптимального значения амплитуды модуляции ϕm, равного 2π, используется сигнал ошибки, вычисляемый по формуле

S=ϕm-2π,

где:

S – сигнал ошибки, подаваемый на схему регулировки амплитуды дополнительной пилообразной модуляции разности фаз,

ϕm - амплитуда дополнительной пилообразной модуляции разности фаз, вычисляемая по формуле

ϕm=4,

– значение приращения разности фаз между соседними отсчетами под действием дополнительной пилообразной модуляции разности фаз, вычисленное с использованием четверки отсчетов по формуле

,

где: u(0), u(1), u(2), u(3) – значения отсчетов сигнала фазового оптического датчика в четверке, измеренные при значениях дополнительной модуляции разности фаз ϕ(0)=0, ϕ(1)= , ϕ(2)=2 и ϕ(3)=3.



 

Похожие патенты:

Изобретение относится к области оптического наблюдения в условиях недостаточной освещенности. Система инфракрасного ночного видения включает источник света видимого диапазона, головной блок управления, блок переключения источника света видимого диапазона в инфракрасный диапазон, камеру ночного видения, светоотражающий экран и средство вывода графической информации на светоотражающий экран.

Изобретение относится к области автоматизированных систем для длительного испытания узлов лазерных систем. Изобретение представляет собой станцию для оценки времени жизни тестируемого каскада усиления волоконного лазера, включающую задающий лазер для генерации лазерных импульсов, оптоволокно для передачи лазерных импульсов, первый предусилитель для усиления импульсов из задающего лазера и увеличения соотношения сигнала к шуму, акустооптический модулятор для управления частотой следования импульсов, второй предусилитель для усиления сигнала до уровня сигнала одного волоконного усилителя из каскада усиления, третий предусилитель для усиления сигнала до уровня нескольких волоконных усилителей из каскада усиления, разветвитель для деления сигнала из третьего предусилителя в равном соотношении и передачи его в тестируемые волоконные усилители, диоды накачки, создающие инверсную населенность в тестируемых волоконных усилителях, подключенные через электрические контакты к источникам тока, ответвители мощности с фотодиодами, которые служат для ответвления небольшой доли мощности на измерительные фотодиоды, АЦП, осуществляющий оцифровку сигнала с измерительных фотодиодов, и передающий сигнал на компьютер с управляющей программой, при этом станция включает управляющую плату, осуществляющую изменение параметров перечисленных устройств и сбор данных, а также блок данных.

Изобретение относится к системам оптической двусторонней связи между подвижными и неподвижными объектами при помощи перестраиваемых фазовых оптических дифракционных решеток и может найти применение в сферах, критичных к передаче и приему информации.

Изобретение относится к средствам мониторинга объектов. Технический результат заключается в расширении арсенала средств того же назначения.

Изобретение относится к устройствам и способам для осуществления и управления оптической фильтрацией длины волны. Перестраиваемый оптический фильтр содержит источник света, поляризатор, входной оптический элемент, жидкокристаллическую ячейку, выходной оптический элемент, блок управления.

Изобретение относится к области, предназначенной для измерения физических величин с использованием фазовых волоконно-оптических датчиков для измерения механических и акустических колебаний.

Изобретение относится к волоконно-оптическим системам связи и обработки информации. В устройстве преобразователя поляризаций применяется волновод в форме эллипса, часть поверхности над которым покрыта диэлектрическим слоем с показателем преломления, равным показателю преломления подложки.

Изобретение относится к волоконно-оптическим системам связи и обработки информации. В устройстве преобразователя поляризаций применяется волновод в форме эллипса, часть поверхности над которым покрыта диэлектрическим слоем с показателем преломления, равным показателю преломления подложки.

Изобретение относится к радиофотонике, в том числе к технике приема слабых широкополосных радиосигналов, например, от антенн и антенных решеток. Заявленный радиофотонный широкополосный приемный тракт на основе ММШГ-модулятора с подавлением собственных шумов лазера содержит лазер, оптическую линию передачи, устройство оптической связи с ММШГ-модулятором, источник модулирующего радиосигнала (антенну), ММШГ-модулятор и оптический фильтр.

Группа изобретений относится к активным волоконным световодам с полностью волоконными вводом излучения накачки в первую оболочку. Волоконный световод-конус для усиления оптического излучения содержит сердцевину из кварцевого стекла, легированного ионами редкоземельных элементов и дополнительными легирующими добавками (например, Ge, Al, Р, F, В), взятыми вместе или по отдельности, при этом диаметр сердцевины увеличивается по длине световода.

Изобретение относится к волоконной оптике, а именно к многолучевому интерференционному устройству для спектральной узкополосной фильтрации излучения в отраженном свете.

Способ заключается в том, что объект освещают широкополосным светом, формируют пучок излучения, переносящий изображение объекта, делят его на два идентичных пучка, один из которых пространственно фильтруют, формируя волну с известной формой волнового фронта, совмещают направления распространения волновых фронтов, осуществляют спектральную фильтрацию этих пучков и регистрируют двумерное спектральное интерференционное изображение.

Изобретение может быть использовано как в приборах видимого диапазона спектра, так и в ИК-системах. Двухлинзовый объектив состоит из расположенных по ходу лучей склеенных отрицательного мениска, обращенного выпуклостью к предмету, и двояковыпуклой линзы.

Изобретение относится к оптическому приборостроению и может найти применение в оптических системах, действующих с источником монохроматического излучения, например в качестве коллиматора, работающего с полупроводниковым лазером, а также в качестве объектива для устройств оптической записи и считывания информации.

Изобретение относится к объективам и может быть использовано в оптических системах наблюдения и в устройствах фоторегистрации. .

Изобретение относится к оптическому приборостроению, а именно к объективам для оптической записи и воспроизведения информации, и найдет применение в бытовой видеоаппаратуре и оптических дисковых запоминающих устройствах.

Группа изобретений относится к области для офтальмологических исследований. Хирургическая система получения изображения и способ для ее осуществления может содержать по меньшей мере один источник света, выполненный с возможностью генерирования луча света; систему направления луча, выполненную с возможностью направления луча света от источника света; лучевой сканер, выполненный с возможностью приема света от системы направления луча и генерирования сканирующего луча света; ответвитель луча, выполненный с возможностью перенаправления сканирующего луча света.
Наверх