Способ получения порошка на основе тугоплавких соединений


B22F2302/45 - Порошковая металлургия; производство изделий из металлических порошков; изготовление металлических порошков (способы или устройства для гранулирования материалов вообще B01J 2/00; производство керамических масс уплотнением или спеканием C04B, например C04B 35/64; получение металлов C22; восстановление или разложение металлических составов вообще C22B; получение сплавов порошковой металлургией C22C; электролитическое получение металлических порошков C25C 5/00)

Владельцы патента RU 2697140:

Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук (RU)

Изобретение относится к получению порошковых материалов тугоплавких соединений. Способ включает приготовление экзотермической смеси переходного металла и неметалла с 1-5 мас.% порошкового полиэтилена, размещение приготовленной смеси в цилиндрическом реакторе, инициирование реакции горения в приготовленной смеси в режиме самораспространяющегося высокотемпературного синтеза (СВС) и сдвиговое деформирование продуктов горения с получением порошка. Обеспечивается увеличение выхода доли частиц получаемого порошка с размерами менее 400 мкм. 1 табл., 2 пр.

 

Изобретение относится к области порошковой металлургии, в частности к получению порошковых материалов тугоплавких соединений способами, сочетающими горение в режиме самораспространяющегося высокотемпературного синтеза (СВС) и высокотемпературное сдвиговое деформирование продуктов синтеза. Полученные предлагаемым способом материалы могут быть использованы в металлургии, химической и инструментальной промышленности, авиадвигателестроении и других областях.

Известен традиционный способ синтеза тугоплавких неорганических соединений методом СВС (SU 255 221 A1, C01G 1/00, 00.00.1969 г. (FR2088668 А5, С04В 35/56, С04В 35/500, 07.01.1972 г., US3726643 А,

С01В 13/32, С01В 21/06, С01В 21/076, С01В 25/06, 10.04.1973 г.; GB 1321084A С01В 13/32, С01В 21/06, С01В 21/076, С01В 25/06, 20.06.1973 г.; JP N 1098839, 1981 г. )), который заключается в экзотермической реакции исходных компонент в реакторах горения, с последующим остыванием продуктов синтеза и их размолом в шаровых мельницах и аттриторах.

Недостатком указанного способа, ввиду высокой твердости и прочности синтезированных материалов, является операция измельчения, которая требует больших усилий и времени, кроме того порошок загрязняется металлом.

Известен способ получения порошков неорганических соединений в режиме самораспространяющегося высокотемпературного синтеза из реакционной смеси (SU 1815934 A1, С01В 31/30, С01В 21/06, 20.09.2003 г. ), включающей составляющие соединение элементы, в замкнутом объеме с последующим измельчением полученного продукта и его химической обработкой, с целью увеличения удельной поверхности порошка соединения и повышения его чистоты, химическую обработку ведут при 40-100°С и непрерывном перемешивании в растворах кислот с концентрацией 5-30 мас. % либо в растворах щелочей с концентрацией 2-40 мас. %, либо в растворах солей с концентрацией 10-30 мас. %.

Недостатком данного способа является сложность и длительность химической обработке синтезированного материала.

Известны способы получения порошков тугоплавких соединений (RU 2161548, B22F 9/16, B22F 3/23, 10.01.2001 г.; RU 98100315 А, B22F 9/16, 27.10.1999 г. ), включающие сжигание экзотермической смеси переходного металла и неметалла (углерода, бора, кремния и др.) в режиме самораспространяющегося высокотемпературного синтеза при направленной фильтрации примесных газов, что исключает разбавление исходной шихты конечным продуктом, и при этом продукт получается в виде легкоразрушающейся пористой массы, что снижает загрязнение целевых порошков материалом мелющих тел на стадиях окончательного передела.

Недостатком данного способа является сложность аппаратного оформления, необходимость предварительного гранулирования исходных реагентов, а также необходимость последующей очистки конечных продуктов синтеза от непрореагировавших компонент.

Наиболее близким по технической сущности к заявляемому изобретению является способ синтеза порошковых материалов в условиях СВС и сдвигового деформирования, который включает приготовление экзотермической смеси переходного металла и неметалла (углерода, бора, кремния, алюминия и др.), инициирование реакции, самораспространяющийся высокотемпературный синтез и последующее сдвиговое деформирование продуктов горения. (П.М. Бажин, A.M. Столин, М.В. Михеев, чл. корр. РАН М.И. Алымов. Самораспространяющийся высокотемпературный синтез в условиях совместного действия давления со сдвигом/ Доклады академии наук, Химическая технология. 2017. Т. 473. №5. С. 568-571).

Недостатком прототипа является низкий выход продукта дисперсностью менее 400 мкм, что говорит о низкой производительности процесса.

Техническим результатом предлагаемого способа является усовершенствование способа и увеличение производительности процесса получения порошковых материалов.

Технический результат достигается тем, что способ получения порошка на основе тугоплавких соединений, включающий приготовление экзотермической смеси переходного металла и неметалла, размещение приготовленной смеси в цилиндрическом реакторе, инициирование реакции горения в приготовленной смеси в режиме самораспространяющегося высокотемпературного синтеза (СВС), сдвиговое деформирование продуктов горения с получением порошка, отличающийся тем, что в состав экзотермической смеси дополнительно вводят 1-5 масс. % порошкового полиэтилена.

Сущность предложенного способа заключается в проведении химической реакции исходных компонент металла и неметалла с добавлением порошкового полиэтилена в режиме самораспространяющегося высокотемпературного синтеза в сочетании с высокотемпературным сдвиговым деформированием. Способ осуществляют следующим образом. В графитовый или металлический цилиндрический реактор помещают предварительно перемешанную экзотермическую смесь из исходных компонент металла (титан, алюминий, железо и др.) и неметаллов (углерод, бор, кремний и др.) в насыпном виде или в виде компактной цилиндрической заготовки. Дополнительно к исходной смеси добавляют 1-5 масс. % порошкового полиэтилена (СВМПЭ). Инициируют вольфрамовой спиралью реакцию горения. Горение смеси с порошковым полиэтиленом приводит к выделению большого количества газа, который препятствует агломерированною и спеканию частиц между собой, что существенным образом снижает прочность спека. После заданного времени производят опускание вращающегося ротора до основания реактора. Таким образом, использование 1-5 масс. % порошкового полиэтилена приводит к значительному увеличению выхода доли частиц с размерами менее 400 мкм (табл.). При малом добавлении порошкового полиэтилена (менее 1 масс. %) положительный эффект не наблюдается. Увеличение в исходной смеси доли порошкового полиэтилена более 5 масс. % снижает экзотермичность смеси и не является целесообразным для низкоэкзотермичных составов, т.к. часть теплоты реакции тратится на горение полиэтилена, а остатков тепла не хватает на поддержание реакции в самораспространяющимся режиме. После синтеза порошков традиционным способом СВС без приложения сдвигового деформирования, синтезированный материал состоит из спека и для его последующего размола требуются дополнительные длительные технологические операции диспергирования при больших усилиях, при этом порошок загрязняется металлом молящих тел.

Сущность предлагаемого изобретения подтверждается следующими примерами.

Пример 1. Приготавливают экзотермическую смесь порошков исходных компонент в соотношении масс. %: (79,2) Ti - (19,8) С - (1,0) СВМПЭ, размещают приготовленную смесь в цилиндрическом реакторе, инициируют реакцию горения в приготовленной смеси в режиме самораспространяющегося высокотемпературного синтеза, после прохождения волны горения опускают вращающий ротор с частотой вращения 120 об/мин. После охлаждения просеивают порошок через сита и классифицируют частицы по размерам (табл.). Полученный порошок состоит из 80 масс. % частиц дисперсностью менее 400 мкм, что в 1,5 раза больше, чем для прототипа и в 80 раз больше, чем для традиционного способа получения.

Пример 2. В условиях примера 1, отличающийся тем, что берут исходные компоненты в следующем соотношении масс. %: (76) Ti - (19) С -(5,0) СВМПЭ, после прохождения волны горения опускают вращающий ротор с частотой вращения 240 об/мин. После охлаждения просеивают синтезированный порошок через сита и классифицируют частицы по размерам (табл.). Полученный порошок состоит из 88 масс. % частиц дисперсностью менее 400 мкм, что в 1,3 раза больше, чем для прототипа и 88 раз больше, чем для традиционного способа получения.

Распределение частиц по размерам в сравнении с порошком, полученным традиционным методом СВС и по прототипу представлены в таблице.

Таким образом, предлагаемая совокупность признаков изобретения позволяет получать порошки на основе тугоплавких соединений в одну технологическую стадию с размерами частиц менее 400 мкм с массовой долей до 88%, при этом производительность процесса получения порошка возрастает в 80-88 раз по сравнению с традиционным способом получения и в 1,3-1,5 раза по сравнению с прототипом. Полученные порошки могут быть использованы в металлургии, химической и инструментальной промышленности, авиадвигателестроении и других областях при изготовлении изделий различного функционального назначения, работающих при абразивном износе, повышенных температурах и в агрессивных средах.

Способ получения порошка на основе тугоплавких соединений, включающий приготовление экзотермической смеси переходного металла и неметалла, размещение приготовленной смеси в цилиндрическом реакторе, инициирование реакции горения в приготовленной смеси в режиме самораспространяющегося высокотемпературного синтеза (СВС) и сдвиговое деформирование продуктов горения с получением порошка, отличающийся тем, что в состав экзотермической смеси дополнительно вводят 1-5 мас.% порошкового полиэтилена.



 

Похожие патенты:
Изобретение относится к твердым и износостойким металлокерамическим инструментальным материалам на основе карбидов вольфрама, титана, тантала с цементирующей карбиды кобальтовой связкой.

Изобретение относится к получению порошка из плотных и сферически сформированных гранул кермета. Способ включает формирование сферически сформированных гранул, содержащих металл, твердые составляющие и органическое связующее вещество, смешивание упомянутых гранул с порошком ингибитора спекания, загрузку смеси в камеру печи, термическую обработку смеси при температуре спекания с обеспечением удаления органического связующего вещества из сферически сформированных гранул, спекания твердых составляющих частей с металлом в каждой сферически сформированной грануле и формирования смеси спеченных плотных сферически сформированных гранул и порошка ингибитора спекания, выгрузку смеси из камеры печи и отделение порошка ингибитора спекания от спеченных плотных сферически сформированных гранул кермета, причем порошок ингибитора спекания содержит углерод.

Изобретение относится к изготовлению изделий из твердосплавных порошковых смесей. Готовят пресс-порошок из твердосплавной смеси путем введения связывающей жидкости с последующим брикетированием полученной смеси и перетиранием сформированных брикетов с образованием пресс-порошка.

Изобретение относится к технической керамике в виде композиционного материала SiC-TiN. Способ включает горячее прессование порошковой смеси.

Изобретение относится к получению порошка на основе тугоплавких соединений. Способ включает приготовление экзотермической смеси переходного металла и неметалла, размещение приготовленной смеси в цилиндрическом реакторе, инициирование реакции горения в приготовленной смеси в режиме самораспространяющегося высокотемпературного синтеза (СВС) тугоплавких соединений, сдвиговое деформирование продуктов горения с получением порошка.

Группа изобретений относится к спеченным твердым сплавам на основе карбида вольфрама, которые могут быть использованы для изготовления режущего инструмента для работы по труднообрабатываемым сталям и сплавам.

Группа изобретений относится к цементированному карбиду для компонента, подвергаемого воздействию давления текучей среды. Согласно варианту 1 цементированный карбид содержит Со, Ni, TiC, Mo, WC и Cr3C2.

Группа изобретений относится к деталям часовых механизмов. Ось часового механизма содержит по меньшей мере одну цапфу на по меньшей мере одном из своих концов.

Изобретение относится к упрочнению поверхности изделия из твердого сплава. Способ включает гидрохимическую обработку изделия в вододисперсной среде при температуре не выше ее кипения с образованием на поверхности упрочняющей фазы и окончательный нагрев изделия при температуре 130-1050°С.

Изобретение относится к области металлургии, а именно к составам материалов, используемых для изготовления изделий, работающих в печах, тепловых агрегатах. Спеченный жаростойкий материал содержит, мас.

Изобретение относится к получению магнитно-абразивного порошка. Готовят смесь, содержащую порошки титана, кобальта и бора, при следующем соотношении компонентов, мас.%: 13,8-27,6 Ti, 55,2-73,6 Со, 12,6-17,2 В.

Изобретения относятся к области металлургии, в частности к составам и способам производства высокопрочных чугунов с шаровидным графитом, и могут быть использованы при производстве литых изделий, например валков прокатных станов.
Изобретение относится к области металлургии цветных металлов, в частности к получению магниевых лигатур с неодимом, которые могут быть использованы в качестве легирующих и модифицирующих добавок в производстве сплавов на основе магния и алюминия, а также в качестве легирующих добавок при производстве чугунов и сталей.

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на основе никеля для изготовления лопаток и других деталей горячего тракта газотурбинных двигателей и установок.

Изобретение относится к области металлургии, а именно к производству безуглеродистых литейных жаропрочных сплавов на основе никеля, и может быть использовано при производстве заготовок для литья изделий, преимущественно монокристаллических рабочих лопаток газотурбинных двигателей.

Изобретение относится получению твердого сплава WC-Co. Способ включает прессование пластифицированной вольфрамокобальтовой порошковой смеси, отгонку пластификатора из полученной заготовки и ее жидкофазное спекание.

Изобретение относится к области металлургии и может быть использовано для обработки ванны расплава при выплавке сплавов. Ультразвуковое устройство для дегазации расплавленного металла содержит ультразвуковой преобразователь, по меньшей мере один ультразвуковой датчик, присоединенный к преобразователю, причем датчик содержит наконечник и по меньшей мере два канала подачи газа, проходящих через датчик, и систему подачи газа, включающую впускное отверстие для газа, пути потока газа по каналам подачи газа и выпускные отверстия для газа на наконечнике датчика или вблизи него.

Изобретение относится к получению металлоуглеродного нанокомпозиционного материала на основе меди, упрочненного углеродными нановолокнами. Способ включает приготовление водного раствора нитрата меди, содержащего нитрат железа, последующую распылительную сушку с образованием порошка, состоящего из нитратов меди и железа, термическое разложение полученного порошка до образования порошкообразных оксидов меди и железа в окислительной атмосфере, восстановление порошкообразных оксидов меди и железа до металлических меди и железа в среде водорода, после чего на поверхности смеси порошков меди и железа выращивают углеродные нановолокона в ацетилен-водородной атмосфере.

Изобретение относится к изготовлению изделия из высокотемпературного композиционного антифрикционного материала. Способ включает подготовку порошкообразных компонентов исходной смеси, измельчение до заданных размеров частиц, формование и спекание.

Изобретение относится к скважинным изделиям из магниевых сплавов и может быть использовано в нефте- и газодобывающей промышленности. Подверженное коррозии скважинное изделие выполнено из магниевого сплава, содержащего, мас.%: 0,01-10 одного или более из Ni, Co, Ir, Au, Pd или Cu, 1-10 Y, 1-15 по меньшей мере одного редкоземельного металла, отличного от Y, и 0-1 Zr.

Изобретение относится к получению магнитно-абразивного порошка. Готовят смесь, содержащую порошки титана, кобальта и бора, при следующем соотношении компонентов, мас.%: 13,8-27,6 Ti, 55,2-73,6 Со, 12,6-17,2 В.
Наверх