Способ переработки марганецсодержащего сырья

Изобретение относится к черной металлургии и может быть использовано при переработке марганецсодержащего сырья. Процесс выплавки ведется непрерывно в трехзонной печи. В первой зоне расплавляют марганецсодержащее сырье, подавая кислород и углеродсодержащие материалы. При этом между плавильной окислительной и восстановительной зонами устанавливают сплошные перегородки с образованием промежуточной зоны, в которой осуществляют дефосфорацию марганецсодержащего оксидного расплава с использованием в качестве СО-содержащих газов компремированные отходящие из восстановительной зоны, которыми продувают оксидный расплав через нижние фурмы, при этом отходящие газы промежуточной зоны дожигают во время расплавления, а печные газы, содержащие газообразный фосфор, после очистки пропускают через водяной затвор, в котором улавливают фосфор. Изобретение позволяет получать высокосортные низкофосфористые марганцевые ферросплавы из марганецсодержащего сырья с повышенным содержанием фосфора. 1 ил., 1 пр.

 

Изобретение относится к черной металлургии, а именно к способам переработки марганецсодержащего сырья с получением марганцевых ферросплавов, и может быть использовано, в частности при выплавке высокоуглеродистого ферромарганца и ферросиликомарганца.

Балансовые запасы марганцевых руд в России составляют около 290 млн. т (~2% мировых), прогнозные ресурсы - более 1 млрд. т. Марганцевые руды России характеризуются сравнительно низким содержанием марганца (15-25%) и повышенным содержанием фосфора (0,2-0,3% и более). Подобные марганцевые руды подвергают обогащению. В получаемых концентратах содержание марганца составляет 30-40%. При обогащении марганцевых руд фосфор не удаляется и практически полностью переходит в марганцевые концентраты. Это связано с тем, что марганец- и фосфорсодержащие минералы глубоко прорастают друг в друга.

Одним из наиболее важных показателей, характеризующих качество марганцевых руд и концентратов, является модуль фосфора - (Р/Мn), отношение содержания фосфора к содержанию марганца в сырье. Для получения стандартных по фосфору марганцевых ферросплавов это отношение в марганецсодержащем сырье должно быть ≤0,003. Поэтому марганецсодержащие продукты, чтобы выплавить из них стандартные марганцевые ферросплавы с требуемым содержанием фосфора, необходимо подвергать дефосфорации.

Известен пирометаллургический способ переработки железосодержащих материалов в двухзонной печи (RU 2541239 С1, Бюл. №4, 2015). В технической литературе этот способ получил название «Двухзонный процесс Ванюкова». Переработка окисленных руд, содержащих железо, происходит в двухзонной печи. В первую зону - плавильную и окислительную через фурмы нижнего ряда подают кислород. В расплав окислительной зоны загружают руду и углеродсодержащие материалы. Кислород и углеродсодержащие материалы подают в количествах, необходимых для полного сгорания углерода. В окислительной зоне протекают процессы горения углерода до СО2.

Подготовленный в первой зоне оксидный расплав через переток поступает во вторую зону - восстановительную. В восстановительную зону загружают углеродсодержащие материалы и необходимые специальные добавки. Восстановительная зона оборудована электродами, электрические дуги компенсируют дефицит тепла, необходимого для протекания процессов восстановления металлов из оксидов и поддержания технологически необходимой температуры металла и шлака. Отходящие газы дожигают в плавильной зоне кислородом, подаваемым через фурмы верхнего ряда. Способ переработки железосодержащих материалов в двухзонной печи (RU 2541239 С1) выбран в качестве аналога. Недостатком этого способа является тот факт, что в данной двухзонной печи невозможно провести процесс дефосфорации - фосфор, содержащийся в шихте, восстанавливается во второй зоне и практически полностью переходит в металл. Поэтому, если исходные шихтовые материалы характеризуются повышенным содержанием фосфора, то и получаемый металл будет иметь повышенное содержание фосфора.

Известен способ дефосфорации марганцевых руд и концентратов путем селективного восстановления фосфора из оксидного расплава газообразным монооксидом углерода СО, который продувают через марганецсодержащий оксидный расплав (RU 2594997 С1, Бюл. №23, 2016). Реакция между оксидом фосфора Р2О5, растворенным в оксидном расплаве, и монооксидом углерода протекает на стенках пузырьков СО, поднимающихся в расплаве. Полноте протекания этой реакции способствует тот факт, что полости пузырьков СО является химическим вакуумом для продукта реакции - газообразного фосфора Р2, поскольку парциальное давление Р2 в пузырьках изначально равно нулю. Газообразный фосфор удаляется с отходящими газами.

Способ дефосфорации марганцевых руд и концентратов (RU 2594997 C1) выбран в качестве прототипа. Недостатком способа-прототипа является тот факт, что он не рассматривает процесс выплавки марганцевых ферросплавов.

Техническим результатом, достигаемым в изобретении, является выплавка низкофосфористых марганцевых ферросплавов - высокоуглеродистого ферромарганца и ферросиликомарганца из марганецсодержащего сырья с повышенным содержанием фосфора. В двухзонной печи после расплавления в первой окислительной зоне марганецсодержащего сырья проводится процесс дефосфорации оксидного расплава путем продувки его монооксидом углерода СО, который продувают через марганецсодержащий расплав. Для этого в двухзонной печи между окислительной и восстановительной зонами организуют дополнительную промежуточную зону для проведения процесса дефосфорации, а также отделяют сплошной перегородкой плавильную окислительную зону и зону дефосфорации от восстановительной зоны. Изобретение поясняет фиг. 1, где: I - зона плавления и окисления; II, IV - переток; III - зона дефосфорации; V - зона восстановления; 1 - борботажные фурмы для продувки оксидного расплава; 2 - фурмы для дожигания; 3 - котел-охладитель; 4, 6 - загрузочные воронки; 5 - электроды; 7 - отстойник шлака; 8 - отстойник металла; 9 - летка полного выпуска расплава; 10 - металл; 11 - шлак; 12 - борботажные фурмы для продувки оксидного расплава монооксидом углерода.

Технический результат достигается следующим образом. В первой зоне расплавляют марганецсодержащее сырье, подавая кислорода и углеродсодержащие материалы. Кислород и углеродсодержащие материалы подают в количествах, необходимых для полного сгорания углерода. В окислительной зоне протекают процесс горения углерода до СO2 и реакции восстановления высших оксидов марганца. Образовавшийся оксидный расплав из первой окислительной зоны через переток поступает в промежуточную зону - зону дефосфорация. Дефосфорацию марганецсодержащего оксидного расплава осуществляют путем продувки расплава газами, содержащими монооксид углерода СО. Расплав, прошедший дефосфорацию, через переток поступает в восстановительную зону, в которую загружают восстановители (кокк, полукокс, уголь), флюсы и другие необходимые шихтовые добавки. Восстановительная зона оборудована электродами, в ней протекают восстановительные процессы. Процесс выплавки ведется непрерывно. Образующиеся углеродистый металлический расплав - марганцевые ферросплавы и шлак периодически выпускают через леточные отверстия.

Источником монооксида углерода СО, потребного для проведения процесса дефосфорации, являются отходящие газы из зоны восстановления, содержащие 80-85% и более монооксида углерода СО. Отходящие газы восстановительной зоны очищают известными способами, компремируют и вдувают через нижние фурмы в оксидный расплав, находящийся в зоне дефосфорации.

Отходящие газы окислительной зоны и зоны дефосфорации дожигают в зоне плавления. Печные газы, содержащие газообразный фосфор, после очистки проходят через водяной затвор, в котором улавливается фосфор. Ведение процесса выплавки марганцевых ферросплавов по описанной выше технологии позволит перерабатывать марганецсодержащее сырье, характеризующихся повышенным содержанием фосфора, с получением низкофосфористых сплавов без экологических нарушений и без дополнительных потерь марганца с отвальными продуктами.

Пример. Для сравнения действующего и предлагаемого способов переработки марганецсодержащего сырья проведен процесс переработки в двухзонной печи марганцевого концентрата, содержавшего, %: 38,39 МnO2; 16,20 МnО; 2,56 Fe2O3; 0,55 Р2O5; 20,71 SiO2; 3,92 СаО; 1,68 Аl2O3; 1,43 MgO; 0,13 S; 15,23 ппп. Концентрат характеризуется повышенным содержанием фосфора - (Р/Мn)=0,0065.

В качестве углеродсодержащего материала, подаваемого в первую окислительную зону, использовали уголь, содержащий, %: 74,8 С; 0,4 S: 10 влаги; 10,8 летучих; 14 золы. Химический состав золы угля, %: 10 Fe2O3; 54 SiO2; 27 Аl2O3; 3,8 СаО; 1,0 MgO; 0,7 Р2O5. В качестве углеродсодержащего материала, подаваемого в восстановительную зону использовали кокс, содержащий, %: 83,77 С; 0,52 S: 1,0 влаги; 1,27 летучих; 13,44 золы. Химический состав золы кокса, %: 10,4 Fe2O3; 51,4 SiO2; 27,9 Аl2O3; 4,0 СаО; 2,5 MgO; 0,6 Р2O5. В качестве флюсующего материала использовали известняк, содержащий, %: 56 СаО; 44 С2O.

Выплавили высокоуглеродистый ферромарганец. Ферромарганец, выплавленный по действующему способу, характеризовался повышенным содержанием фосфора - 0,56%, шлак содержал 0,06 P2O5.

По предлагаемому способу оксидный расплав первой зоны подвергали дефосфорации, продувая его отходящими газами из восстановительной зоны, содержащими 82% СО. Степень дефосфорации составила 80%. Расплав, поступающий в восстановительную зону, содержал 0,09 Р2O5. Ферромарганец, выплавленный по предлагаемому способу, характеризовался низким содержанием фосфора - 0,11%, шлак содержал 0,02 Р2О5.

По обоим вариантам средний химический состав металла, %: 78,28 Мn; 12,22 Fe; 6,35 С; 2,58 Si; 0,01 S; средний химический состав шлака, %: 9,68 МnО; 0,24 FeO; 37,98 SiO2; 45,58 СаО; 3,42 Аl2O3; 2,91 MgO; 0,13 S. Основность шлака CaO/SiO2=1,2, кратность шлака - 1,3. Расход материалов по обоим вариантам на 1 т высокоуглеродистого ферромарганца: 2650 кг марганцевого концентрата; 220 кг угля; 650 нм3 кислорода; 400 кг кокса; 890 кг известняка; 75 кг стальной стружки.

Как видно из приведенных данных, содержание фосфора в высокоуглеродистом ферромарганце, выплавленному по предлагаемому способу, предусматривающему дефосфорацию оксидного расплава продувкой газами, содержащими монооксид углерода, в 5 раз ниже, чем в высокоуглеродистом ферромарганце, выплавленном по действующему способу.

Технико-экономические преимущества предлагаемого способа переработки марганецсодержащего сырья заключается в том, что его использование позволит получать высокосортные низкофосфористые марганцевые ферросплавы из марганецсодержащего сырья с повышенным содержанием фосфора.

Способ переработки марганецсодержащего сырья, включающий загрузку марганецсодержащего сырья и углеродсодержащих материалов в плавильную окислительную зону печи, расплавление их в барботируемом кислородсодержащим дутьем марганецсодержащем оксидном расплаве, восстановление высших оксидов марганца и дефосфорацию марганецсодержащего оксидного расплава с использованием СО-содержащих газов, подвергнутый дефосфорации расплав поступает в восстановительную зону, в которую загружают углеродсодержащие материалы, флюсы и необходимые шихтовые добавки, восстанавливают марганец с образованием низкофосфористого высокоуглеродистого ферромарганца и шлака и производят раздельный выпуск продуктов плавки, при этом отходящие газы плавильной окислительной зоны дожигают во время расплавления, отличающийся тем, что между плавильной окислительной и восстановительной зонами устанавливают сплошные перегородки с образованием промежуточной зоны, в которой осуществляют дефосфорацию марганецсодержащего оксидного расплава с использованием в качестве СО-содержащих газов компремированные отходящие из восстановительной зоны, которыми продувают оксидный расплав через нижние фурмы, при этом отходящие газы промежуточной зоны дожигают во время расплавления, а печные газы, содержащие газообразный фосфор, после очистки пропускают через водяной затвор, в котором улавливают фосфор.



 

Похожие патенты:

Настоящее изобретение относится к светоотверждающей печи (1; 100), содержащей: светоотверждающую камеру (2), выполненную с возможностью помещения в нее одного или нескольких изделий (А), подлежащих светоотверждению; источник (3) светоотверждающих лучей, расположенный внутри светоотверждающей камеры (2); вакуумный насос (4), имеющий по меньшей мере один всасывающий канал (5), сообщающийся с указанной светоотверждающей камерой (2); средство (6; 106) перемещения, обеспечивающее перемещение указанных изделий (А) во время процесса светоотверждения.

Изобретение относится к нагревательным устройствам и может быть использовано для термического анализа полимеров. Предложено устройство для нагрева полимеров при термическом анализе, состоящее из горизонтально ориентированной керамической трубы, расположенной в кожухе с прилегающей теплоизоляцией, и нагревателя поверх керамической трубы в виде нихромовой обмотки, с расположенным внутри трубы анализируемым полимерным материалом, причем в керамической трубе соосно с ней дополнительно установлена кварцевая труба с подводом азота и отводом пиролитических газов, в которой по длине вдоль оси устройства расположен длинномерный полимерный материал, а между кварцевой трубой и керамической трубой, снабженной нагревателем в виде нихромовой обмотки с постоянным шагом с разъемами для подачи электроэнергии, расположена дополнительная керамическая труба с нагревателем в виде нихромовой обмотки с переменным шагом, определяемым формулой (n+2)⋅1 мм, где n - номер витка обмотки, с разъемами для подачи электроэнергии, при этом кварцевая и керамические трубы в устройстве центрированы керамическими втулками.

Изобретение относится к области металлургии и может быть использовано для получения ферроникеля в печи Ванюкова непрерывным процессом. Способ включает предварительную сушку никелевой руды, обжиг никелевой руды в трубчатой вращающейся печи, непрерывную загрузку полученного огарка на подину печи Ванюкова, включающей плавильную и восстановительную зоны и сифон, расплавление огарка в плавильной зоне печи, перетекание полученного расплава в восстановительную зону печи и сифон, выпуск полученного шлака и выпуск расплава ферроникеля из печи в ковш.

Изобретение относится к зуботехнической печи. Печь содержит камеру спекания для тепловой обработки реставрированных частей зубов.

Изобретение относится к области металлургии и может быть использовано, например, в печи Ванюкова. Система дополнительно снабжена корректирующим регулятором соотношения шихта/кислородно-воздушная смесь по температуре в котле-утилизаторе, датчиком температуры котла-утилизатора, установленным на границе между пароиспарительной и конвективной зонами котла-утилизатора, регулятором температуры в котле-утилизаторе по расходу охлаждающей воды в аптейк печи перед котлом-утилизатором, измерителем температуры котла-утилизатора с сигнализатором заданной температуры, переключателем датчика температуры, при этом датчик температуры связан с корректирующим регулятором температуры, корректирующий регулятор температуры связан с регулятором соотношения шихта/кислородно-воздушная смесь, переключатель датчика температуры связан с корректирующим регулятором соотношения шихта/кислородно-воздушная смесь, регулятором температуры в котле-утилизаторе по расходу охлаждающей воды в аптейк печи перед котлом-утилизатором и измерителем температуры котла-утилизатора с сигнализатором заданной температуры.

Настоящее изобретение относится к обработке изделий горячим прессованием, предпочтительно горячим изостатическим прессованием. Прессовое устройство содержит топочную камеру, расположенную внутри камеры высокого давления устройства и окруженную теплоизолированным кожухом.

Изобретение относится к области обработки изделий горячим прессованием. Устройство для обработки содержит сосуд высокого давления, имеющий печную камеру и расположенный под ней теплообменник.

Изобретение относится к области автоматизированных систем управления технологическими процессами и производствами, а конкретно к способу аналитического контроля состава штейна процесса Ванюкова плавки медных или медно-никелевых сульфидных материалов в печи Ванюкова, и может быть использован в металлургической, химической и других отраслях промышленности.

Изобретение относится к области цветной металлургии, а конкретно к способам получения первичной меди из ее рудного сырья, а также к используемым для осуществления такого рода процесса устройствам.

Изобретение относится к способу и устройству для плавки окисленного никелевого и железорудного сырья. .
Изобретение относится к черной металлургии и может быть использовано для очистки от примесей ферросилиция, полученного восстановительной плавкой в рудно-термических электрических печах.

Изобретение относится к металлургии и касается технологической линии для производства ферросплавов, лигатур и огнеупорных материалов. Технологическая линия содержит размещенный после склада сырья участок шихтоподготовки, оборудованный взаимосвязанными системами приготовления шихтовых смесей с их одновременной сушкой и загрузки тиглей шихтой для осуществления синтеза, и участок дробления, помола и фракционирования спёков готовой продукции, размещенный после участка механической разделки тиглей со спёком, а участок синтеза содержит СВС реакторы, оборудованные запальными устройствами и подключенные к системам азотоснабжения и охлаждения, к системе вакуумирования и системе газоснабжения различными технологическими газами в зависимости от типа получаемой продукции.

Изобретение относится к металлургии и может быть использовано для индукционного переплава ферромарганца. Способ включает создание защитного слоя в тигле печи спеканием футеровочной массы в два этапа.

Изобретение относится к области черной металлургии, в частности к выплавке ферросплавов из чистой пятиокиси ниобия внепечным металлотермическим процессом. В способе осуществляют загрузки в шахту шихты, ее проплавление, выдержку и раздельный выпуск продуктов плавки.

Изобретение относится к области металлургии, а именно к особохладостойким конструкционным сталям, используемым для изготовления оборудования, предназначенного для хранения и транспортировки сжиженного природного газа.

Группа изобретений относится к получению гранулированного феррохрома. Способ включает гранулирование расплава феррохрома, содержащего 1-9 мас.% С, 25-70 мас.% Cr, ≤ 2,0 мас.% Si, остальное Fe и примеси не более 3 мас.%.

Изобретение относится к металлургии, в частности к процессу пирометаллургической переработки окисленной никелевой руды, содержащей цветные металлы и железо, с получением ферроникеля и чугуна.

Изобретение относится к области металлургии, в частности к производству ферросплавов алюмотермическим методом. В способе исходный ванадийсодержащий материал измельчают, смешивают с углеродистым восстановителем при соотношении суммы содержащихся в нем пентоксида ванадия и оксидов железа к углероду 1:(0,04-0,08), смесь окусковывают и подвергают термической обработке с получением окускованного продукта, который проплавляют совместно с остальными шихтовыми материалами, при этом восстановительный период плавки проводят в два этапа, при этом вначале проплавляют 5-30% от общего количества пентоксида ванадия, необходимого для получения жидкого полупродукта, при соотношении ванадия и железа в шихтовой смеси 1:(0,23-2,60), а остальное количество пентоксида ванадия - при соотношении 1:(0,10-0,22), причем доля пентоксида ванадия, задаваемого в окускованном виде на первом этапе, составляет 0,10-0,20 от общего его количества в шихтовой смеси и 0,30-0,90 - на втором этапе.
Изобретение относится к области черной металлургии и может быть использовано для получения рафинированного ферросилиция с содержанием алюминия и кальция 0,02-0,05%. В способе расплавляют ферросилиций в виде отсевов от дробления ферросилиция фракции 0-15 мм с содержанием алюминия до 2,5% и кальция до 0,7%, а рафинирование осуществляется со снижением алюминия и кальция в ферросилиции до 0,02-0,05%, при этом используют в качестве рафинирующих шлакообразующих смесь, состоящую из извести и окислительной добавки в виде железорудных окатышей, железорудного концентрата или железной руды в количестве 3-5% от веса исходного ферросилиция при соотношении известь:окислительная добавка (1:1,5)-2,5, соответственно, и плавикового шпата в количестве 6-7,5% от веса рафинировочных шлакообразующих.

Изобретение относится к области металлургии, а именно к технологии производства магнитных сплавов системы железо-алюминий-никель-кобальт, применяемых для получения постоянных магнитов электродвигателей и навигацинных устройств.
Наверх