Нелинейный монокристалл литиевых халькогенидов общей формулы ligaxin1-xte2 и способ его получения



Нелинейный монокристалл литиевых халькогенидов общей формулы ligaxin1-xte2 и способ его получения
Нелинейный монокристалл литиевых халькогенидов общей формулы ligaxin1-xte2 и способ его получения
Y10T117/1092 -
Y10T117/1092 -
G02F1/3551 - Устройства или приспособления для управления интенсивностью, цветом, фазой, поляризацией или направлением света, исходящего от независимого источника, например для переключения, стробирования или модуляции; нелинейная оптика (термометры с использованием изменения цвета или прозрачности G01K 11/12; с использованием изменения параметров флуоресценцией G01K 11/32; световоды G02B 6/00; оптические устройства или приспособления с использованием подвижных или деформируемых элементов для управления светом от независимого источника G02B 26/00; управление светом вообще G05D 25/00; системы визуальной сигнализации G08B 5/00; устройства для индикации меняющейся информации путем выбора или комбинации отдельных элементов G09F 9/00; схемы и устройства управления для приборов
C01P2002/50 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

Владельцы патента RU 2699639:

Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН) (RU)

Изобретение относится к монокристаллам литиевых халькогенидов, предназначенных к применению в нелинейной оптике для реализации перестройки лазерного излучения видимого и ближнего ИК-диапазона в средний ИК-диапазон. Получен нелинейный монокристалл литиевых халькогенидов общей формулы LiGaxIn1-xTe2, где х принимает любое значение от 0,1 до 0,9, имеющий пространственную группу Id тетрагональной симметрии, Z=4, с параметрами элементарной ячейки 6,3295<а<6,398 , 11,682<с<12,460 и объемом 468,01<V<510,0 , характеризующийся функциональными параметрами: диапазоном прозрачности от 0,76 до 14,8 микрон, шириной запрещенной зоны 1,837 эВ при 300 К, значениями двулучепреломления 0,049 при 2 мкм и нелинейными коэффициентами d13=3,70 пм/В и d14=48,73 пм/В. Способ получения монокристалла литиевых халькогенидов общей формулы LiGaxIn1-xTe2, где х принимает любое значение от 0,1 до 0,9, включает предварительный синтез соединения LiGaxIn1-xTe2 из элементарных компонентов Li, In, Ga и Te в условиях обеспечения стехиометрического соотношения компонентов, рост монокристалла модифицированным методом Бриджмена-Стокбаргера в вакуумированной ампуле при обеспечении изменения соотношения температурных градиентов в расплаве и растущем кристалле при скорости выращивания от 2 до 10 мм/сутки и среднем значении аксиального температурного градиента от 2 до 3°С/мм и охлаждение печи со скоростью порядка 10°С/ч. Технический результат заключается в обеспечении возможности сдвига края поглощения в короткую область (по мере увеличения x) в сочетании с увеличением коэффициента преобразования за счет достижения некритичного фазового синхронизма. Ожидаемый эффект увеличения КПД преобразования лазерного излучения при использовании данного нелинейного монокристалла составит 10-30% по сравнению с нелинейными монокристаллами LiGaTe2. При варьировании значения (x) можно обеспечить согласование групповых и фазовых скоростей лазерного излучения, при котором увеличивается эффективная длина взаимодействия для фемтосекундного режима генерации, что обеспечит дополнительный эффект порядка 10-20% КПД. 2 н.п. ф-лы, 3 ил., 3 пр.

 

Изобретение относится к монокристаллам литиевых халькогенидов, предназначенных к применению в нелинейной оптике для реализации перестройки лазерного излучения видимого и ближнего ИК-диапазона в средний ИК-диапазон.

Монокристаллы халькогенидов являются перспективными нелинейно-оптическими материалами для среднего инфракрасного диапазона. В настоящее время для преобразования лазерного излучения в среднем ИК-диапазоне наиболее часто используют монокристаллы тиогаллата серебра AgGaS2, селеногаллата серебра AgGaSe2 и тиогаллата ртути HgGa2S4 (см., например, Rotermund F., Petrov V., Noack F. OPTICS COMMUNICATIONS. - 2000, v. 185. - P. 177-183). Недостатками этих материалов являются: во-первых, большое двухфотонное поглощение, что неизбежно снижает эффективность преобразования лазерного излучения, во-вторых, значительная анизотропия теплового расширения (для AgGaS2 и AgGaSe2) и низкая теплопроводность, которая не позволяет использовать материалы при больших мощностях излучения из-за низкой лучевой стойкости, а также значительного эффекта образования тепловых линз.

Возможность управления составом в ряду непрерывных твердых растворов нелинейных соединений позволяет реализовать наиболее эффективное преобразование излучения в перестраиваемых лазерных системах. На сегодняшний день наиболее востребованными являются лазерные системы, реализующие некритичный фазовый синхронизм, поскольку именно такие системы обладают целым рядом достоинств: обладают большими значениями спектральной и угловой ширины синхронизма, являются высокоэффективными и удобными в эксплуатации, дают возможность использовать максимальный тензорный коэффициент нелинейности. Некритичный фазовый синхронизм определяется сочетанием определенного характера дисперсии показателей преломления и двулучепреломления используемого монокристалла. Использование полупроводниковых монокристаллов, смешанных четверных халькогенидов позволяет достигать некритичного фазового синхронизма в системах параметрической генерации света в среднем ИК диапазоне. Особый интерес представляют четверные соединения ряда твердых растворов, крайние члены которых (тройные халькогениды) отличаются по своим характеристикам: например, нелинейные тройные соединения AgInSe2 характеризуются более высокими нелинейными коэффициентами второго порядка по сравнению с аналогичными галлий-содержащими монокристаллами, но коэффициент двулучепреломления для них существенно ниже, чем для AgGaSe2 [Apollonov V.V., Lebedev S.P., Komandin G.A. et al. - LASER PHYSICS, 1999, v. 9, p. 1236-1239]. Именно в таком случае в ряду AgGaxIn1-xSe2 может быть достигнута оптимальная комбинация функциональных характеристик, позволяющая достичь положительных результатов с точки зрения повышения эффективности преобразования лазерного излучения, благодаря достижению некритичного фазового синхронизма. Новый тип смешанных нелинейных монокристаллов CdxHg1-х Ga2S4 и AgGa1-х InxSe2 позволил путем подбора оптимального значения х обеспечить выполнение условий некритичного фазового синхронизма при комнатной температуре и обеспечить условия выполнения группового синхронизма в направлении фазового. Условия некритичного фазового синхронизма, реализованные в монокристаллах AgGa1-х InxSe2, при определенных значениях х обеспечили увеличение эффективности генерации второй гармоники СО2-лазеров в 1.9 раза по сравнению с тройным соединением AgGaSe2. [Bhar G.C., Das S. et al. - OPTICS LETTERS, 1995, v. 20, p. 2057]. В последнее время оптическая параметрическая генерация в диапазоне 2.85-3.27 микрон в условиях некритичного синхронизма была продемонстрирована на монокристаллах смешанного состава HgxCd1-xGa2S4 [Banerjee S., Miyata K., Kato K. - Proc. of SPIE, 2008, v. 6875, p. 687517]. Авторы изобретения на примере монокристаллов LiInSe2 и LiGaSe2 показали, что замещение Ag на Li приводит к увеличению ширины запрещенной зоны, сдвигу края пропускания в коротковолновую область и, как следствие, к уменьшению двухфотонного поглощения в Li-содержащих монокристаллах по сравнению с Ag-содержащими халькогенидами. [L. Isaenko, A. Yeliseyev, S. Lobanov etc. - Journal of Applied Physics, 2002, v. 91, №12, p. 9475-80]. Кроме того, литийсодержащие халькогениды имеют теплопроводность примерно в 5 раз выше теплопроводности наиболее распространенных серебросодержащих халькогенидов. [L. Isaenko, A. Yeliseyev, S. Lobanov etc. - Journal of Non-Crystalline Solids, 2006, v. 352, p. 2439-2443]. Эффект тепловых линз в Li-содержащих монокристаллах в 10 раз ниже, чем в AgGaSe2. [A. Yeliseyev, L. Isaenko, S. Lobanov etc. - Journal of Applied Physics, 2004, v. 96 №7, p. 3659-3664]. Монокристаллы LiInSe2 и LiGaSe2 характеризуются низкой анизотропией коэффициента теплового расширения вдоль кристаллографических направлений. В результате в процессе роста не образуются типичные двойники и напряжения, связанные с этим явлением. Это обеспечивает технологичность процессов роста и изготовления элементов, а также покрытий на оптические поверхности. Монокристаллы теллурида LiGaTe2 демонстрируют увеличение нелинейной восприимчивости dij по сравнению с сульфидами и селенидами: в ряду LiGaS2 - LiGaSe2 - LiGaTe2 dij составляет 10.7, 18.2 и 43 пм/В, соответственно [Nikogosyan D.N. Nonlinear optical crystals, A complete survey - Springer Science+ Business Media, Inc.: New-York, USA, 2005]. Значения dij для индиевых аналогов этих соединений обычно на 30-50% выше, при этом теллуриды имеют примерно в 2 раза большее двулучепреломление Δn. Поэтому четверные смешанные монокристаллы на базе галлий- и индийсодержащих тройных теллуридов с большой разницей в показателях преломления могут оказаться очень перспективными с точки зрения получения некритического фазового синхронизма в системах параметрической генерации света в среднем ИК диапазоне [Isaenko L.I., Yelisseyev A.P. - Semiconductor Science and Technology, 2016, v. 31, p. 123001].

Задачей изобретения является создание нелинейного монокристаллического материала на базе твердых растворов LiGaxIn1-xTe2 при различных значениях (x) для реализации перестройки лазерного излучения видимого и ближнего ИК-диапазона в средний ИК-диапазон, сочетающего низкое двухфотонное поглощение и достаточно высокий нелинейный коэффициент.

Технический результат заключается в обеспечении возможности сдвига края поглощения в короткую область (по мере увеличения x), в сочетании с увеличением коэффициента преобразования за счет достижения некритичного фазового синхронизма. Ожидаемый эффект увеличения КПД преобразования лазерного излучения при использовании данного нелинейного материала составит 10-30% по сравнению с нелинейными монокристаллами LiGaTe2. Также при варьировании значения (x) можно добиться такого согласования групповых и фазовых скоростей лазерного излучения, при котором увеличивается эффективная длина взаимодействия, что очень важно для фемтосекундного режима генерации, и это даст дополнительный эффект порядка 10-20% КПД. Таким образом, можно ожидать увеличение КПД на 30-50%.

Поставленная задача решена созданием нелинейного монокристалла литиевых халькогенидов общей формулы LiGaxIn1-xTe2, где х принимает любое значение от 0.1 до 0.9, имеющего пространственную группу Id тетрагональной симметрии, Z=4, параметры элементарной ячейки 6.3295<а<6.398 , 11.682<с<12.460 , объем 468.01<V<510.0

Монокристалл состава LiGa0.55In0.45Te2 характеризуется диапазоном прозрачности от 0.76 до 14.8 микрон, шириной запрещенной зоны 1.837 эВ при 300 К. Рассчитанные значения двулучепреломления составляют 0.049 при 2 микрон и нелинейных коэффициентов d13=-3.70 пм/В и d14=-48.73 пм/В

Монокристалл общей формулой LiGaxIn1-xTe2, где х принимает любое значение от 0.1 до 0.9, выращивают модифицированным методом Бриджмена-Стокбаргера в вакуумированной ампуле с предварительным синтезом соединения состава LiGaxIn1-xTe2 из элементарных компонентов Li, In, Ga и Te в условиях обеспечения стехиометрического соотношения компонентов. В процессе роста обеспечивается изменение соотношения температурных градиентов в расплаве и растущем кристалле при скорости выращивания от 2 до 10 мм/сутки при среднем значении аксиального температурного градиента от 2 до 3°С/мм. Эти условия обеспечивают сохранение постоянства состава (х) выращиваемого кристалла. Затем печь охлаждают со скоростью порядка 10°С/час. Небольшие нарушения стехиометрии, возникающие в процессе синтеза из-за высокой химической активности Li и летучести теллура, корректируют путем введения избытка лития и теллура. После загрузки исходных веществ в стеклографитовый тигель его помещают в кварцевый контейнер. Особая геометрия тигля [патент РФ 2189405, МПК: C30B 11/02, опубл. 20.09.2002] и загрузки предотвращает прямое сплавление компонентов, приводящее к выделению большого количества тепла и существенному нарушению стехиометрии в процессе синтеза.

Частичная замена ионов Ga3+ на In3+ позволяет улучшать нелинейные свойства LiGaxIn1-xTe2 по сравнению с LiGaTe2 (48.73 для LiGa0.55In0.45Te2 и 43 пм/В для LiGaTe2), сохраняя при этом возможность широкой настройки полосы в оптических параметрических осцилляторах.

На фиг. 1 представлен выращенный слиток LiGaxIn1-xTe2 (а) и его изображение в проходящем свете (b), полученное с помощью телевизионной камеры, чувствительной в инфракрасном диапазоне.

На фиг. 2 приведена кристаллическая структура LiGa0.55In0.45Te2.

На фиг. 3 представлен спектр пропускания монокристалла LiGa0.55In0.45Te2 (а) и построение по Тауцу для прямых межзонных электронных переходов (b).

Примеры конкретного выполнения.

Пример 1. Для получения образца LiGa0.55In0.45Te2 массой 30 г используют исходные элементарные компоненты: литий, галлий, индий и теллур высокой чистоты: литий - 0.763 г, галлий - 3.482 г, индий - 5.741 г, теллур - 26,158 г. Исходные элементарные вещества имели чистоту квалификации о.с.ч. Содержание основного вещества в исходных материалах: Li - 99.9 %, In - 99.9999 %, Ga - 99.9999 %, Te - 99.9999 %. Небольшие нарушения стехиометрии, возникающие в процессе синтеза из-за высокой химической активности Li и летучести теллура, корректировали путем введения избытка лития и теллура. После загрузки исходных веществ в стеклографитовый тигель его помещают внутрь кварцевого контейнера. После загрузки исходных веществ контейнер с тиглем подключают к вакуумному посту. Свободный объем контейнера откачивают или заполняют инертным газом, после чего проводят его отпайку. Для синтеза LiGaxIn1-xTe2, кварцевый контейнер с размещенным в нем стеклографитовым тиглем медленно задвигают в трубчатую печь сопротивления, прогретую до 850°С градусов. Затем контейнер выдерживают при 850°С в течение суток, снижают температуру до 700°С и выдерживают еще сутки, после чего охлаждают до комнатной температуры в режиме выключенной печи. В результате получают плотные тёмные мелкокристаллические слитки с содержанием фазы LiGa0.55In0.45Te2, близким к 100%. Раскалывание и перекладывание слитков в ростовой контейнер проводят в инертной атмосфере. Ростовой контейнер помещают в вертикальную печь сопротивления. После перекладывания контейнер с загрузкой подключают к вакуумному посту и отпаивают до остаточного давления 10-4 торр. Выращивание монокристалла осуществляют модифицированным методом Бриджмена-Стокбаргера с возможностью изменения соотношения температурных градиентов в расплаве и растущем кристалле. Печь нагревают, доводя шихту до плавления. Аксиальный температурный градиент составляет от 2 до 3°С/мм. Скорость выращивания составляет 4 мм/сутки. Использована конструкция печи, позволяющая менять соотношение температурных градиентов в расплаве и растущем кристалле, что позволяет преодолеть ряд сложных моментов, связанных с особенностью теплофизических свойств теллуридов [ Neumann H. Zeitschrift anorganische und allgemeine Chemie, 1986, v. 532, p. 150-156]. После стадии выращивания печь охлаждают со скоростью 10°С/час.

Параметры ячейки полученного монокристалла: а=6.38124 (8) A, с=12.1108 (2) A, V=493.16 (2) A3. Диапазон прозрачности от 0.76 до 14.8 мкм, ширина запрещенной зоны 1.837 эВ при 300 К, рассчитанные значения двулучепреломления 0.049 при 2 микрон и нелинейных коэффициентов d13=-3.70 пм/В и d14=-48.73 пм/В.

Пример 2. Для получения монокристаллического образца LiGa0.75In0.25Te2 используют исходные элементарные компоненты: литий, галлий, индий и теллур высокой чистоты: литий - 0.694 г, галлий - 5.301 г, индий - 2.874 г, теллур - 25.520 г. Условия получения, как в примере 1. Получен образец LiGa0.75In0.25Te2 массой до 30 г. Диапазон прозрачности от 0.64 до 15 мкм.

Пример 3. Для получения образца LiGa0.25In0.75Te2 массой до 30 г используют исходные элементарные компоненты: литий, галлий, индий и теллур высокой чистоты: литий - 0.703 г, галлий - 1.749 г, индий - 8.621 г, теллур - 25.532 г. Условия получения, как в примере 1. Диапазон прозрачности от 0.87 до 15.5 мкм.

1. Нелинейный монокристалл литиевых халькогенидов общей формулы LiGaxIn1-xTe2, где х принимает любое значение от 0,1 до 0,9, имеющий пространственную группу Id тетрагональной симметрии, Z=4, с параметрами элементарной ячейки 6,3295<а<6,398 , 11,682<с<12,460 и объемом 468,01<V<510,0 , характеризующийся функциональными параметрами: диапазоном прозрачности от 0,76 до 14,8 микрон, шириной запрещенной зоны 1,837 эВ при 300 К, значениями двулучепреломления 0,049 при 2 мкм и нелинейными коэффициентами d13=3,70 пм/В и d14=48,73 пм/В.

2. Способ получения монокристалла литиевых халькогенидов общей формулы LiGaxIn1-xTe2, где х принимает любое значение от 0,1 до 0,9, включает предварительный синтез соединения LiGaxIn1-xTe2 из элементарных компонентов Li, In, Ga и Te в условиях обеспечения стехиометрического соотношения компонентов, рост монокристалла модифицированным методом Бриджмена-Стокбаргера в вакуумированной ампуле при обеспечении изменения соотношения температурных градиентов в расплаве и растущем кристалле при скорости выращивания от 2 до 10 мм/сутки и среднем значении аксиального температурного градиента от 2 до 3°С/мм и охлаждение печи со скоростью порядка 10°С/ч.



 

Похожие патенты:

Определенные примерные варианты осуществления изобретения относятся к блоку остекления, включающему первую стеклянную основу (202); экран (204) для защиты от излучения, покрывающий, непосредственно или косвенно, по меньшей мере, часть области наружной кромки первой стеклянной основы (202).

Настоящее изобретение относится к панелям жидкокристаллического дисплея (LCD). Панель содержит: источник подсветки; подложку матрицы, расположенную на источнике подсветки; матрицу светочувствительных устройств, выполненную на подложке матрицы; схему управления, соединенную с матрицей светочувствительных устройств.

Изобретение относится к схемам отображения. Технический результат заключается в расширении арсенала средств того же назначения.

Изобретение относится к дифракционным решеткам, используемым в устройствах дополненной реальности. Согласно способу изготовления жидкокристаллической структуры для дифракционной решетки фотоориентант, расположенный на подложках, облучают поляризованными когерентными волнами, которые интерферируют между собой, где одна из указанных волн имеет сферический волновой фронт, а другая – плоский.

Изобретение относится к области искусственного освещения, в частности к способам управления излучением света, а также к области устройств наблюдения, в частности к способам ослабления засветки оптических приборов.

Изобретение относится к технике систем для подсветки жидкокристаллических индикаторов (ЖКИ) и может быть использовано в бортовых индикаторах при работе операторов в обычных условиях и с применением приборов ночного видения (ПНВ).

Изобретение относится к устройствам, обеспечивающим изменение величины светопропускания под воздействием электрического тока, а именно к стабильным электрохромным модулям, состоящим из нескольких отдельных слоев различных материалов.

Изобретение относится к переключаемым стеклам, изменяющим свои светопропускающие характеристики при приложении надлежащего напряжения. Просматриваемая насквозь панель (102) с регулированием светопроницаемости включает в себя первый и второй слои (104, 106) прозрачной подложки и слой (112) устройства со взвешенными частицами (SPD) между ними.

Изобретение относится к радиотехнике, в частности к приборам СВЧ на магнитостатических волнах, и может быть использовано в качестве демультиплексора. Демультиплексор содержит подложку, с размещенными на ней первым и вторым протяженными микроволноводами из железоиттриевого граната, входную микрополосковую антенну, первую и вторую выходные микрополосковые антенны, источники магнитного поля, связанные со средствами управления.

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров с субкиловаттной средней мощностью излучения.

Изобретение относится к области получения кристалла трибората лития LiB3O5 (LBO), являющегося высокоэффективным нелинейно-оптическим материалом, применяющимся для пассивного преобразования частоты лазерного излучения.

Изобретение относится к области получения кристалла трибората лития LiB3O5 (LBO), являющегося высокоэффективным нелинейно-оптическим материалом, применяющимся для пассивного преобразования частоты лазерного излучения.

Группа изобретений относится к лазерной технике. Способ генерирования фемтосекундных ультрафиолетовых лазерных импульсов, реализуемый соответствующей системой, включает направление на нелинейный оптический кристалл первого лазерного импульса, имеющего основную длину волны в ближней инфракрасной области электромагнитного спектра, при этом первый лазерный импульс имеет длительность импульса менее 1000 фемтосекунд.

Изобретение относится к области оптического материаловедения и касается материала для визуализации лазерного излучения ближнего ИК-диапазона спектра (1800÷2150 нм) в видимый спектральный диапазон (635÷670 нм).

Изобретение относится к области оптики и касается способа генерации узкополосного терагерцового излучения. Генерация осуществляется путем воздействия линейно поляризованными фемтосекундными лазерными импульсами на входную поверхность анизотропного нелинейного монокристалла, приводящего к преобразованию излучения с терагерцовым выходом в направлении распространения лазерных импульсов при длине прохождения этих импульсов в монокристалле, равной длине поглощения в нем терагерцового излучения на рабочей частоте, и терагерцовым выходом в обратном направлении, при длине прохождения, превышающей длину поглощения терагерцового излучения на рабочей частоте.

Изобретение относится к области нелинейной оптики, а именно к оптическим материалам, обладающим способностью к изменению пропускания ультрафиолетового излучения при воздействии на них управляющего излучения.

Изобретение относится к области нелинейной оптики, а именно к оптическим материалам, обладающим способностью к изменению пропускания ультрафиолетового излучения при воздействии на них управляющего излучения.

Изобретение относится к области получения сегнетоэлектрических монокристаллов фторидов, применяемых в нелинейной оптике. Получен монокристаллический материал фторида SrMgF4, обладающий способностью к преобразованию лазерного излучения в ВУФ/УФ области спектра от длины волны 0,122 мкм до 11,8 мкм с коэффициентом нелинейности для моноклинной фазы dij=0.044 пм/В и характеризующийся наличием сегнетоэластического фазового перехода при 480 K.

Изобретение относится к оптической технике. В способе ограничения интенсивности лазерного излучения (ЛИ), включающем подачу потока лазерного излучения на вход устройства, ограничивающего мощность лазерного излучения, подачу потока ЛИ ведут путем последовательного пропускания потока ЛИ через размещенный на входе в оптическую систему в фокальной плоскости двух сопряженных линз первый каскад, а затем через второй каскад.

Изобретение относится к области оптической техники, а именно к ограничителям мощности приемников лазерного излучения, и может найти применение для защиты глаз, оптических систем и приемников лазерного излучения от разрушающего действия входного излучения высокой мощности.

Изобретение может быть использовано при создании тонкопленочных солнечных батарей. Для получения монозеренных кестеритных порошков используют прекурсорные смеси, состоящие из Cu2Se, CuSe, ZnS и SnSe2.
Наверх