Способ получения композиционного материала на основе ванадиевого сплава и стали

Изобретение относится к области промышленных технологий получения композиционных материалов, а именно к деформационно-термической обработке композиционных материалов на основе металлов и сплавов. Способ получения композиционного материала, состоящего из внутреннего слоя из ванадиевого сплава V - 3-11 мас.% Ti - 3-6 мас.% Cr и двух наружных слоев из коррозионно-стойкой стали ферритного класса с содержанием хрома не менее 13 мас.%, включает подготовку композиционной заготовки, состоящей из упомянутых внутреннего слоя и наружных слоев, горячую обработку давлением и последующую выдержку в печи. Осуществляют подготовку композиционной заготовки, толщина внутреннего слоя которой в 1,5-2 раза больше, чем суммарная толщина наружных слоев из коррозионно-стойкой стали, проводят горячую обработку давлением упомянутой заготовки в диапазоне температур 1050-1150°С со степенью обжатия от 30 до 40% и с последующей выдержкой в течение 1-3 часов при снижении температуры до 500-700°С, затем осуществляют отжиг заготовки путем нагрева до температуры 850-950°С, выдержки в течение 2-4 часов и последующего охлаждения в печи. Указанные режимы получения обеспечивают формирование зоны диффузионного соединения между ванадиевым сплавом и сталью повышенной толщины размером 60-70 мкм, что при заданном соотношении толщин в исходной композиционной заготовке приводит к получению более высокого комплекса механических свойств композиционного материала. 2 з.п. ф-лы.

 

Изобретение относится к области промышленных технологий получения композиционных материалов, а именно к деформационно-термической обработке композиционных материалов на основе металлов и сплавов, и может быть использовано для получения полуфабрикатов и изделий из них в виде листов и лент, труб и прутков, обладающих высоким комплексом механических, коррозионных и радиационных свойств при повышенных температурах.

Известны способы деформационно-термической обработки металлов и сплавов с использованием различных технологий обработки давлением (ковка, прокатка, прессование и пр.) и термической промежуточной и заключительной обработки (отжиг, нормализация и пр.). Существующие технологии обеспечивают необходимый уровень свойств в полуфабрикатах и готовых изделиях из однородных материалов, однако не всегда напрямую применимы к получению полуфабрикатов и изделий из композиционных материалов, компоненты в которых достаточно разнородны (например, разные металлы или сплавы на их основе) и обладают отличающимися физико-механическими свойствами. В таких случаях, при возможности использования тех же технологий и технологического оборудования требуется, как минимум, подбор особых режимов обработки, позволяющих достигать однородной деформации при совместной пластической деформации и необходимого диффузионного сцепления между компонентами композита и оптимального комплекса физико-механических свойств конечного композита.

Известен способ получения композиционного материала путем совместной пластической деформации, при котором компоненты разнородных материалов, собранные в пакет (или композитную заготовку), одновременно подвергаются деформации и затем термической обработке в результате которых происходит схватывание компонентов с формированием цельного композита. Использование технологий данного типа для получения ответственных изделий активной зоны атомных реакторов, в частности оболочек твэлов атомных реакторов из композиционных материалов на основе металлов и сплавов различного типа (сталей и др.) показано, например, в RU 2302044 "Твэл реактора на быстрых нейтронах со свинцовым теплоносителем". Недостатком данного способа является возможная неравномерность деформации компонентов, приводящая к разнотолщинности соединяемых компонентов и недостаточному их сцеплению между собой. На неравномерность деформации слоев влияние оказывают соотношение прочностных свойств металлов, соотношение толщин слоев, параметры очага деформации, коэффициент внешнего и межслойного трения и расположение слоев в заготовке. Неравномерность деформации может приводит к возникновению разрывов на границе соединения компонентов.

Также известен способ получения композитов на основе ванадиевых сплавов и коррозионно-стойких сталей в виде листов или труб, основанный на использовании совместной пластической деформации путем совместной горячей прокатки или прессования при температуре 1100°С составной композитной заготовки и использования отжигов при температурах в диапазоне от 850°С до 1000°С в течение двух часов [Никулин С.А., Вотинов С.Н., Рожнов А.Б. Ванадиевые сплавы для ядерной энергетики. - М.: Изд. Дом МИСиС. 2013, 184 с.]. В процессе получения слоистых металлических материалов согласно данному способу происходит формирование так называемой переходной диффузионной зоны, характеризующей перенос элементов через границу контакта в обе стороны. Ее размер зависит от параметров получения (степени и скорости деформации, температуры) и характеристик соединяемых материалов, но как правило, после первой итерации соединения ширина зоны не превышает 5-10 мкм. Переходная зона во многом определяет прочность соединения компонентов композита и возможность осуществления последующих этапов обработки давлением без образования дефектов. При получении композита из ванадиевых сплавов и стали по описанному выше способу, размер переходной зоны, образовавшейся при прокатке (прессовании) не превышал 8-10 мкм, а отжиг при температуре 1000°С, увеличивал ее еще на 60-80 мкм. Ширина переходной зоны в данном случае, хотя и обеспечивает некоторое сцепление компонентов, но является недостаточной для получения надежного прочного соединения ванадиевого сплава и стали и наряду с неоптимальной зеренной структурой компонентов на границе соединения и неоднородностью толщины переходной зоны по ее длине, в связи с неравномерностью деформации по сечению, что не обеспечивает необходимый комплекс механических свойств композита в изделии целиком. Таким образом, недостаточная ширина переходной зоны и не оптимальная микроструктура на границе соединения компонентов является недостатком указанного выше способа.

Наиболее близким к заявленному изобретению, выбранному в качестве прототипа, является способ, описанный в [С.А. Никулин и др. Влияние отжига на структуру и механические свойства трехслойного материала «сталь/ванадиевый сплав/сталь» // Цветные металлы». 2018. №2. С. 70-75]. В данном способе композит на основе ванадиевого слава и стали был получен путем совместной пластической деформации (ко-экструзии) при Т=1100°С и последующего отжига при температуре в диапазоне 800-900°С в течение 2-ух часов. Данный способ обеспечивает относительно высокие прочностные и пластические свойства, что связано с формированием несколько более широкой переходной зоны соединения (10-30 мкм), отсутствием выделений второй фазы на границе соединения компонентов композита и формированием относительно не крупного зерна в стали у границы раздела с ванадиевым сплавом (45-70 мкм).

Недостатком указанного способа является то, что ширина сформированной данным способом переходной зоны между ванадиевым сплавом и сталью является все еще не достаточно большой (что особенно может наблюдаться в местах разнотолщинности слоев), а также формируется не достаточно равномерная структура по сечению композита, что может приводить к возможным расслоениям в отдельных местах и формированию несплошностей между слоями композита при последующих этапах обработки давлением. Кроме того, данный способ является энергозатратным, поскольку предусматривает повторный нагрев для отжига после полного остывания после горячей обработки давлением.

Задачей, на решение которой, направлено настоящее изобретение является увеличение ширины переходной диффузионной зоны соединения между компонентами композита (ванадиевым сплавом и сталью) при одновременном отсутствии выделений вторых фаз на границе соединения и приемлемом размере зерна в ванадиевом сплаве и стали у границы раздела (а также равномерности структуры по сечению композита), что обеспечивает оптимальный комплекс механических свойств с точки зрения последующих этапов обработки композита. Дополнительно, задачей является понижение энергозатрат при реализации способа (при деформационно-термической обработке).

Техническим результатом является высокая прочность сцепления (расслоения образца при деформации не происходит вплоть до разрушения образца) компонентов композита (ванадиевого сплава и стали) при высокой пластичности (относительное удлинение 16-20%), отсутствие расслоений по границе соединения компонентов на последующих этапах обработки, понижение энерготазтрат при осуществлении способа.

Предлагаемый способ получения композиционного материала на основе ванадиевого сплава (системы ванадий-титан-хром) и коррозионностойкой стали (ферритного класса) включает горячую обработку давлением в защитной атмосфере композитной заготовки при температуре в диапазоне 1050-1150°С с величиной обжатия 30-40% и последующую выдержку в печи, которая осуществляется ступенчато - путем охлаждения с температур горячей обработки до температур 500-700°С и выдерживанием в течение 1-3 часов и затем с нагревом до температур 850-950°С и выдерживанием в течение 2-4 часов с последующим охлаждением с печью, так что суммарное время выдержки в печи составляет в диапазоне 3-7 часов.

Предлагаемый способ обеспечивает формирование зоны диффузионного соединения между ванадиевым сплавом и сталью повышенной толщины размером 60-70 мкм, при незначительном росте размера зерна ванадиевого сплава и стали, снижении остаточных напряжений и отсутствии выделений вторых фаз, что при заданном соотношении толщин в исходной композиционной заготовке обеспечивает более высокий комплекс механических свойств композиционного материала. Важным аспектом предлагаемого способа является то, что при увеличении общего времени термической обработки (отжига) достигается увеличение ширины переходной зоны соединения и более равномерная структура и снижение остаточных напряжений по сечению за счет процессов рекристаллизации, а ожидаемого при этом значительного роста зерна в компонентах композита и формирования выделений вторых фаз на границе соединения не происходит (за счет реализации ступенчатой схемы выдержки), что обеспечивает высокий комплекс механических свойств. Также предлагаемый способ обеспечивает понижение энергозатрат при своей реализации за счет исключения части дополнительного нагрева для отжига.

Увеличение времени выдержки после горячей обработки до нескольких часов является допустимым в практике термической обработки, если это не приводит к нежелательным явлениям в виде формирования хрупких соединений на границе раздела или резкому роста зерна в материалах - компонентах. Использование несколько более низких температур при выдержке (500-700°С) приводит к некоторому сдерживанию протекания структурных процессов, но обеспечивает протекание диффузионных процессов, что приводит к увеличению ширины переходной зоны между компонентами и повышает прочность сцепления.

Указанный способ реализуется следующим образом. Традиционными известными методами подготавливается композиционная заготовка в виде листа, ленты, трубы или прутка, состоящая из внутреннего слоя ванадиевого сплава (V-3-1l% Ti мас. - 3-6% Cr мас.) и двух наружных слоев коррозионно-стойкой стали (ферритного класса с содержанием хрома не менее 13% мас.). В данной заготовке толщина слоя ванадиевого сплава в 1,5-2,0 раза больше, чем суммарная толщина слоев стали. Композиционную заготовку подвергают горячему прессованию или горячей прокатке в защитной атмосфере при температуре в диапазоне 1050-1150°С с величиной обжатия 30-40%. После этого, обработанная давлением заготовка остывает до температуры в диапазоне 500-700°С в течение 1-3 часов в защитной атмосфере, после чего, нагревается до температуры 850-950°С и выдерживается (отжиг) в течение 2-4 часов также в защитной атмосфере с последующим охлаждением в печи.

Для реализации предложенного способа в качестве одного из вариантов (примера) использовали трехслойную листовую заготовку из сплава V-4% Ti-4% Cr толщиной 1850 мкм, расположенного в центре и двух листов коррозионностойкой стали 08X17Т, расположенных сверху и снизу толщиной 300 мкм. Трехслойную заготовку готовили традиционным способом включая подготовку поверхностей и вакуумирование. Композиционную заготовку подвергали горячей прокатке в защитной атмосфере при температуре 1100°С. После горячей прокатки трехслойной заготовки ее толщина составила 1750 мкм. После горячей прокатки, трехслойная заготовка остывала до температуры 600°С в течение 2-ух часов в защитной атмосфере. Далее ее переносили в печь и осуществляли отжиг при температуре 900°С в течение 3-х часов в защитной атмосфере аргона с последующим остыванием с печью.

После получения заготовки от нее отрезали образцы в различных местах по ее длине и проводили материаловедческие исследования (анализ микроструктуры, перераспределение химических элементов в зоне соединения). Результаты анализа показали, что ширина переходной диффузионной зоны соединения составила 70±5 мкм, на границе соединения слоев отсутствовали выделения каких-либо вторых фаз, размер зерна стали вблизи границы соединения составил 65±5 мкм). На границе раздела также отсутствовали какие-либо дефекты (трещины, расслоения и пр.). Механические испытания биметаллических микрообразцов на растяжение, вырезанных поперек стенки трубы показали достаточно высокий комплекс механических свойств (σ0,2=310±12 МПа, (σВ=450±15 МПа, δ=20±2%) и более высокую воспроизводимость этих свойств по длине трубы (свойства воспроизводились с точностью ±5-7% по длине трубы). Таким образом, было показано, что применение предложенного способа позволяет добиться существенного увеличения ширины переходной зоны без формирования выделений вторых фаз на границе соединения и без существенного роста зерна компонентов композита вблизи границы раздела. Это позволяет добиться более высокого комплекса механических свойств композиционного материала и стабильности свойств по длине трубы.

1. Способ получения композиционного материала, состоящего из внутреннего слоя из ванадиевого сплава V - 3-11 мас.% Ti - 3-6 мас.% Cr и двух наружных слоев из коррозионно-стойкой стали ферритного класса с содержанием хрома не менее 13 мас.%, включающий подготовку композиционной заготовки, состоящей из упомянутых внутреннего слоя и наружных слоев, горячую обработку давлением и последующую выдержку в печи, отличающийся тем, что осуществляют подготовку композиционной заготовки, толщина внутреннего слоя которой в 1,5-2 раза больше, чем суммарная толщина наружных слоев из коррозионно-стойкой стали, проводят горячую обработку давлением упомянутой заготовки в диапазоне температур 1050-1150°С со степенью обжатия от 30 до 40% и с последующей выдержкой в печи в течение 1-3 часов при снижении температуры до 500-700°С, а затем осуществляют отжиг заготовки путем нагрева до температуры 850-950°С, выдержки в течение 2-4 часов и последующего охлаждения в печи.

2. Способ по п. 1, отличающийся тем, что горячую обработку давлением проводят путем горячего прессования или горячей прокатки.

3. Способ по п. 1, отличающийся тем, что горячую обработку давлением и выдержку в печи осуществляют в защитной атмосфере.



 

Похожие патенты:

Изобретение относится к области деформационно-термической обработки сплавов титан-никель с эффектом памяти формы и может быть использовано в машиностроении, медицине и технике.

Изобретение относится к упрочнению поверхности изделия из твердого сплава. Способ включает гидрохимическую обработку изделия в вододисперсной среде при температуре не выше ее кипения с образованием на поверхности упрочняющей фазы и окончательный нагрев изделия при температуре 130-1050°С.

Изобретение относится к металлургии, а именно к получению заготовки из наноструктурного сплава титан-никель с эффектом памяти формы, и может быть использовано в машиностроении, медицине и технике.

Изобретение относится к трубопрокатному производству, а именно к способу производства товарных труб из титановых сплавов. Способ производства холоднокатаных товарных труб размером 273×10×8700-9500 мм из титановых сплавов ПТ-1М и ПТ-7М включает отливку слитков в вакуумно-дуговых печах, ковку слитков в поковки, обточку поковок в заготовки размером 500±5×1750±25 мм, сверление в заготовках центрального отверстия диаметром 90±5 мм, шоопирование Al2O3, нагрев в методических печах в муфелях до температуры 1140-1160°C, прошивку заготовок размером 500±5×90±5×1750±25 мм в стане поперечно-винтовой прокатки на оправке диаметром 300 мм с коэффициентом вытяжки μ от 1,39 до 1,46 в гильзы размером 515×вн.315×2400-2590 мм, прокатку гильз на пилигримовом стане в калибре 351 мм с коэффициентом вытяжки μ=4,78, с подачами гильз в очаг деформации m=18-20 мм, в передельные трубы размером 338×28×10300-11200 мм, резку передельных труб на две трубы равной длины, расточку и обточку горячекатаных передельных труб в трубы-заготовки размером 325×15×5150-5600 мм, прокатку их на станах ХПТ по маршруту 325×15×5150-5600 - 273×10×8700-9500 мм с относительным обжатием по стенке δm=33,3% и коэффициентом вытяжки μm=1,77.

Настоящее изобретение относится к области металлургии, а именно термической обработке конструкционных демпфирующих сплавов системы Mn-Cu. Способ термической обработки листов из сплавов системы Mn-Cu для восстановления их демпфирующей способности включает нагрев при температуре 150-400°С, выдержку не менее 525 с на 1 мм толщины листа и охлаждение со скоростью не менее 2°С/с.

Изобретение относится к трубопрокатному производству. Способ производства холоднокатаных товарных труб размером 219×9×11700-12800 мм из титановых сплавов ПТ-1М и ПТ-7М включает отливку слитков в вакуумно-дуговых печах, ковку слитков в поковки, обточку поковок в заготовки размером 500±5×1750±25 мм, сверление в заготовках центрального отверстия диаметром 90±5 мм, шоопирование Al2O3, нагрев в методических печах в муфелях до температуры 1140-1160°C, прошивку заготовок размером 500±5×90±5×1750±25 мм в стане поперечно-винтовой прокатки на оправке диаметром 300 мм с коэффициентом вытяжки μ от 1,39 до 1,46 в гильзы размером 515×вн.315×2400-2590 мм, прокатку гильз на пилигримовом стане в калибре 351 мм с вытяжкой μ=4,78 и подачей в очаг деформации m=18-20 мм, в передельные трубы размером 338×28×10300-11200 мм, отрезку технологических отходов, правку передельных труб, резку передельной трубы на две трубы равной длины, расточку и обточку горячекатаных передельных труб в трубы-заготовки размером 325×15×5150-5600 мм, прокатку их на станах ХПТ по маршрутам 325×15×5150-5600 - 273×12×7300-7950 - 219×9×11700-12800 мм с относительными обжатиями по стенке δm=20,0%, δ1m=25,0% и коэффициентами вытяжки μm=1,49 и μ1m=1,66.

Изобретение относится к области металлургии, а именно к изготовлению полосы из магнитомягкого сплава. Способ изготовления полосы из магнитомягкого сплава толщиной менее 0,6 мм, пригодной для механической резки, включает холодную прокатку полосы, полученной горячей прокаткой полуфабриката, затем полосу подвергают непрерывному отжигу пропусканием через печь непрерывного действия при температуре в пределах от температуры перехода упорядочения/разупорядочения сплава до температуры начала ферритно-аустенитного превращения сплава, причем скорость движения полосы устанавливают таким образом, чтобы время выдержки полосы в печи непрерывного действия при температуре отжига составляло меньше 10 минут.

Изобретение относится к области металлургии, а именно к обработке давлением и может быть использовано для получения из этих материалов заготовок, полуфабрикатов и изделий с регламентированной структурой, используемых в аэрокосмической и автомобильной технике.

Изобретение относится к металлургии, в частности к термической обработке титановых сплавов. Способ термической обработки изделия из деформируемого сплава ВТ23 характеризуется тем, что изделие нагревают до 850°С, выдерживают 1 ч, охлаждают в воде и подвергают старению при температуре 550°С в течение 10 ч.

Изобретение относится к металлургии, в частности к термической обработке титановых сплавов. Способ термической обработки изделий из титанового сплава ВТ16 включает закалку путем нагрева до температуры 790-830°C, выдержки и охлаждения в воде.

Изобретение относится к пористым структурам с заданным коэффициентом Пуассона. Раскрыта ауксетическая структура, содержащая первый слой и второй слой, при этом первый слой определяет множество первых отверстий, выполненных согласно первому рисунку, и это множество первых отверстий обеспечивает первую пористость; и второй слой, определяющий множество вторых отверстий, выполненных согласно второму рисунку, обеспечивающему вторую пористость.

Изобретение относится к пористым материалам и ячеистым твердым телам с заданными анизотропными коэффициентами Пуассона. Раскрыты ауксетические структуры, низкопористые ауксетические листы, системы и устройства с ауксетическими структурами, а также способы использования и способы изготовления ауксетических структур.

Изобретение относится к области изготовления плакированных труб и касается композитной трубы и способа ее изготовления. Труба состоит из несущей трубы и по меньшей мере одной защитной трубы, причем несущая труба изготовлена из некоррозионностойкой стали, имеющей как минимум частично аустенитную структуру, со следующим химическим составом (мас.

Изобретение относится к способу получения высокопрочного стального листа с покрытием, имеющего предел текучести YS по меньшей мере 800 МПа, предел прочности на разрыв TS по меньшей мере 1180 МПа, общее удлинение по меньшей мере 14% и коэффициент раздачи отверстия HER по меньшей мере 30%.

Изобретение относится к получению стальных деталей, упрочненных под прессом и изготавливаемых из листов, содержащих покрытие на основе алюминия и цинковое покрытие, и обладающих хорошими характеристиками в отношении фосфатирования и, следовательно, хорошим сцеплением с краской.

Изобретение может быть использовано для получения износостойких материалов с помощью энергии взрывчатых веществ (ВВ), в частности при изготовлении пар трения для эксплуатации в условиях неагрессивных сред.

Изобретение может быть использовано при получении износостойких материалов с помощью энергии взрывчатых веществ (ВВ), в частности, при изготовлении пар трения для эксплуатации в условиях неагрессивных сред.

Изобретение может быть использовано при получении износостойких материалов с помощью энергии взрывчатых веществ (ВВ), в частности, при изготовлении пар трения в виде тормозных устройств, предназначенных для эксплуатации в условиях неагрессивных сред.

Изобретение относится к способу пластической деформации алюминиевого композиционного материала. Способ пластической деформации алюминиевого композиционного материала, который имеет сердцевинный сплав из алюминиевого сплава типа АА6ххх и по меньшей мере один предусмотренный с одной или обеих сторон внешний слой из алюминиевого сплава типа АА8ххх с пределом прочности при растяжении Rp0,2 в состоянии мягкого или диффузионного отжига от 25 до 60 МПа, включает пластическую деформацию в формующем инструменте, причем в алюминиевом композиционном материале для напряжений пластического течения алюминиевого сплава сердцевины и по меньшей мере одного внешнего слоя в состоянии мягкого или диффузионного отжига действительно выражение kf, внешнее/kf, сердцевины<0,5, где kf, внешнее - напряжение пластического течения алюминиевого сплава внешнего слоя в состоянии мягкого или диффузионного отжига, a kf, сердцевины - напряжение пластического течения алюминиевого сплава сердцевины, пластическую деформацию осуществляют посредством процесса глубокой вытяжки и/или процесса обтяжной вытяжки и пластическую деформацию осуществляют таким образом, что по меньшей мере в одном локальном положении в формующем инструменте напряжение τR сдвига при трении между инструментом и алюминиевым композиционным материалом на контактной поверхности достигает напряжения kAuβen пластического течения при сдвиге внешнего слоя алюминиевого сплава.

Изобретение относится к способу получения изготавливаемой по размеру деформируемой в горячем состоянии листовой заготовки. По меньшей мере два листа (1, 2”) из стали разного сорта и/или разной толщины соединяют встык лазерной сваркой.

Изобретение относится к области авиадвигателестроения и может быть использовано при изготовлении моноколес, применяемых в роторах газотурбинных двигателей. Способ включает изготовление полых лопаток с образованием аэродинамического профиля пера и замковой части, технологического кольца и диска, сварку лопаток с технологическим кольцом с образованием блинга, после чего проводят механическую обработку блинга и диска для получения совмещаемых поверхностей.
Наверх