Способ получения проницаемого керамического материала с высокой термостойкостью


C04B35/62204 - Формованные керамические изделия, характеризуемые их составом (пористые изделия C04B 38/00; изделия, характеризуемые особой формой, см. в соответствующих классах, например облицовка для разливочных и плавильных ковшей, чаш и т.п. B22D 41/02); керамические составы (содержащие свободный металл, связанный с карбидами, алмазом, оксидами, боридами, нитридами, силицидами, например керметы или другие соединения металлов, например оксинитриды или сульфиды, кроме макроскопических армирующих агентов C22C); обработка порошков неорганических соединений перед производством керамических изделий (химические способы производства порошков неорганических соединений C01)

Владельцы патента RU 2700386:

Федеральное государственное бюджетное научное учреждение "Федеральный научный агроинженерныйцентр ВИМ" (ФГБНУ ФНАЦ ВИМ) (RU)

Изобретение относится к изготовлению пористых легковесных изделий на основе кордиерита для получения носителей катализаторов и фильтров для очистки сточных вод от органических загрязнений. Способ получения проницаемого керамического материала с высокой термостойкостью заключается в том, что пенополиуретан пропитывают шликером, включающим обожженный тальк, глинистый и алюмооксидный компоненты и водный раствор поливинилового спирта, сушат и обжигают. В качестве алюмооксидного компонента используют отход производства алюмохромового катализатора дегидрирования изопарафинов, который предварительно прокаливают при температуре 1000-1150°С. Твёрдые компоненты шликера находятся в следующем соотношении с учётом стехиометрического состава кордиерита, мас.%: тальк обожженный 33-38, прокаленный отход 13–31, глинистый компонент 34-49. Использование изобретения позволяет упростить и удешевить способ изготовления керамического материала, повысить его прочность и термостойкость за счет увеличения содержания в нем кордиерита. 2 табл., 5 пр.

 

Изобретение относится к химической, металлургической промышленности, машиностроению и агропромышленному комплексу (АПК), а в частности к изготовлению пористых легковесных изделий на основе кордиерита для получения носителей катализаторов и фильтров, для очистки сточных вод от органических загрязнений. Высокая термостойкость обеспечит долговечность изделий при их многократной регенерации в процессе прокаливания и удаления органических загрязнений.

Известен способ для получения кордиерита из чистых оксидов или солей, взятых в стехиометрическом соотношении. Так, известна шихта для получения кордиерита (авт. св. № 1548177, МПК C 04 B 35/18, 1990), в которую входят следующие компоненты, мас. %: дисперсный оксид кремния 46, 51-47, 38; оксид магния 0,59-2,92; оксид алюминия 1,50-7,43; сульфат магния 29,15-35,44; порошок алюминия 1,51-15,95.

Недостатками известного состава, как и других составов на основе чистых компонентов, являются, низкая прочность получаемых изделий, узкий интервал спекания, высокая стоимость применяемых в качестве сырья материалов.

Известна шихта для получения кордиерита (патент РФ №2 211 199, МПК C04B 35/18, 2003). Шихта включает соединения магния, кремния и алюминия, дополнительно содержит добавку сверхтонкого порошка металлического алюминия, полученного методом электрического взрыва проводника, при следующем соотношении компонентов, мас.%: глина 34,5 - 49,0, сырой тальк 32,5 - 35,0, гиббсит 11,0-32,5, сверхтонкий порошок (СТП) алюминия 0,5 - 5,0. Введение сверхтонкого порошка металлического алюминия позволяет повысить выход кордиерита при одновременном снижении температуры синтеза.

Недостатками состава является высокая стоимость материала за счет применения СТП алюминия. Кроме того, применение сырого талька и гиббсита приводит к повышенной усадке в обжиге за счет имеющих место объемных изменений при разложении этих соединений.

Формование изделий осуществляется широко известными из уровня техники методами прессования, литья из термопластичных шликеров. Известные методы не позволяют получить легковесные, высокопористые изделия (кажущаяся плотность около 0,4 г/см3), которые необходимы для применения материала в качестве носителя катализатора или фильтрующей керамики. Для этих целей используют методы пенообразования, экструзии сотовых структур, пропитку пенополиуретана в технологии высокопористого ячеистого материала (ВПЯМ) или введение полимерных пористых шариков в шликер (Стрелов, К.К.Теоретические основы технологии огнеупорных материалов [Учеб.пособие для металлург. специальностей вузов] / К.К. Стрелов, И.Д. Кащеев.- М.: Металлургия, 1996.-606 с.; Леонов, А. И. Сравнительная оценка свойств блочных носителей сотового и ячеистого строения с точки зрения использования в процессах каталитической очистки газов / А.И. Леонов, О.Л. Сморыго, А.Н. Ромашко и др.// Кинетика и катализ. - 1998.- Т.39 (№5). - С. 691−700).

В списке легковесных, высокопористых изделий ВПЯМ занимают особое место, они обладают уникальным свойством для целей катализа, отличающим их от других материалов, используемых в качестве носителей для катализаторов. Для ВПЯМ характерна арочно-лабиринтная пористая структура и они технологичны в изготовлении. Благодаря своей структуре коэффициент внешней диффузии у ВПЯМ в 3-4 раза больше, чем, например, у широко используемых в настоящее время сотовых блочных структур. Следовательно, и активность катализаторов ячеистой структуры в ряде процессов, контролируемых диффузионными явлениями, будет выше в несколько раз.

Наиболее близким по совокупности существенных признаков является принятый в качестве прототипа состав шихты и способ, описанный в заявке №: 96118080/03 от 11.09.1996. Известный состав для изготовления пористого проницаемого керамического материала с высокой термостойкостью, включает обожженный тальк, глинистый и алюмооксидный компоненты. Он содержит алюмооксидный компонент в виде глинозема, кварцевый песок, полевой шпат, бой фарфоровых изделий, при следующем соотношении компонентов, мас. %:

тальк 16-20,
глинозем 9-12,
глинистый компонент 34-38,
кварцевый песок 17-19,
полевой шпат 11-13,
бой фарфоровых изделий 4-5.

Отдельные компоненты шихты тщательно размалывают до среднего диаметра частиц 1-5 мкм и перемешивают в заданном соотношении. Подготовленную шихту используют в качестве дисперсной фазы в шликере, дисперсионной средой которого является 1-5%-ный водный раствор поливинилового спирта. Заготовки пенополиуретана размером 30х30х30 мм с диаметром ячейки 2,0-2,5 мм пропитывают шликером, высушивают и обжигают при 1320-1400°C для удаления органической пены и упрочнения сетчато-ячеистого каркаса. Полученные образцы плотностью 0,35-0,40 г/см3 испытывают на прочность при сжатии, коррозионную стойкость и термостойкость.

Недостатком известного способа является сложность изготовления многокомпонентного состава, необходимость использования наряду с природными веществами искусственно синтезируемого глинозема, что удорожает стоимость продукта. Кроме того, керамические образцы обладают недостаточной прочностью, а невысокое содержание кордиерита (40-50 мас.%) обуславливает их неудовлетворительную термостойкость.

Технической задачей изобретения является упрощение и удешевление способа изготовления керамического материала, повышение его прочности и термостойкости за счет увеличения содержания в нем кордиерита.

Поставленная техническая задача достигается тем, что в способе получения проницаемого керамического материала с высокой термостойкостью, заключающимся в том, что пенополиуретан пропитывают шликером, включающим обожженный тальк, глинистый и алюмооксидный компоненты, сушат и обжигают, согласно изобретению, в качестве алюмооксидного компонента используют отход производства алюмохромового катализатора дегидрирования изопарафинов, который прокаливают при температуре 1000-1150 °С, при содержании компонентов, мас. %:

тальк обожженный 33-38,
прокаленный отход 13 – 31,
глинистый компонент 34-49.

При использовании природных компонентов чистый кордиерит получить не представляется возможным, поскольку компоненты всегда содержат примеси щелочных и щелочноземельных элементов, а также железа, титана и др. В процессе обжига примеси изменяют химизм процесса в сторону образования, помимо кордиерита, клиноэнстатита, алюмомагнезиальной шпинели, муллита, корунда и стекла. Количество образующихся фаз зависит от температуры обжига, дисперсности компонентов и примесей в них. ГОСТ на природное сырье дает интервал значений содержания оксидов алюминия, магния и кремния.

Содержание природных компонентов и отхода катализаторного производства в шихте предварительно рассчитывали с учетом стехиометрического состава кордиерита и разброса содержания оксидов в компонентах шихты. Рассчитанные значения концентраций уточнялись экспериментально. Выход за указанные выше пределы концентраций компонентов приводит к уменьшению содержания кордиерита.

Для синтеза кордиерита используют тальк Шабровского месторождения марки ТМК-28, глину Дружковскую марки ДН-1 и отход производства алюмохромового катализатора дегидрирования изопарафинов КДИ-90 Нижнекамского завода катализаторов, который содержит 98 мас.% гидроксида алюминия и до 2 мас.% примесей оксидов кремния, щелочных и щелочноземельных металлов (оксиды натрия, калия, кальция). Поскольку исходный отход является гидроксидом и характеризуется значением показателя потерь при прокаливании (п.п.п.) 24-27 % его прокаливают для перевода в α-форму. Диапазон температур прокаливания определяется тем, что при температуре менее 1000°С полиморфное превращение полностью не завершается, что впоследствии увеличивает усадку изделий и уменьшает их прочность. По данным петрографического анализа (исследование проводили на поляризационном микроскопе «Полам Р-211» в проходящем свете, использовали иммерсионный метод анализа) после 1100°С структура частиц отхода - сферолитовая, состоящая из беспорядочно ориентированных кристаллов (квадратных по форме). Размер сферолитов 20-40 мкм, кристаллы корунда внутри них около 3 мкм. Присутствуют оксиды щелочных и щелочноземельных металлов (оксиды натрия, калия, кальция). Оксиды входят в структуру корунда и отдельных фаз с оксидом алюминия (типа β-глинозема) не образуют. Такая структура определяет высокую активность прокаленных гидроксидов в синтезе кордиерита. Однако, повышение температуры обжига выше 1150°С приводит к значительному уплотнению структуры сферолитов. Частицы внутри сферолитов припекаются, что увеличивает время измельчения и в результате возрастают затраты на изготовление изделий.

Прокаленный отход производства катализатора измельчают до среднего размера частиц 1-5 мкм и перемешивают сухим способом с предварительно высушенной и раздробленной глиной и обожжённым тальком. Шликер готовят в лопастной мешалке. В качестве временного связующего используют поливиниловый спирт марки 17-88 (ГОСТ 10749-69). Количество связующего и соотношение твердого и жидкого подбирают с учетом обеспечения необходимых технологических свойств шликера (шликер должен быть достаточно густой, не должен стекать с заготовки, но и не забивать ячейки матрицы). Для пропитки используют эластичный ячеистый пенополиуретан с открыто-пористой сетчатой структурой марки ППУ-ЭО-100 (ТУ 6-05-5127-82)с ячейкой R30 (размер ячейки 1,0-1,3 мм). Пропитанные образцы сушат на воздухе и в сушильном шкафу и обжигают при температуре 1330-1380°С.

Полученные образцы плотностью 0,37-0,42 г/см3 испытывали на прочность при сжатии на разрывной машине 2054-Р. Для определения ТКЛР были спрессованы и спечены компактные образцы размером 5х5х50 мм. ТКЛР измеряли на кварцевом дилатометре по ГОСТ 10978-83.Коррозионную стойкость определяли по потере массы образцов после выдержки в течение 5 суток в растворах агрессивных реагентов.

Примеры составов исходной шихты в пределах заявленных концентраций и за пределами представлены в таблице 1, а свойства материала из этих шихт в таблице 2.

Таблица 1 - Составы исходной шихты, мас. %

Компонент № состава
1 2 3 4 5
Тальк прокаленный 33 38 36 30 40
Прокаленный отход производства
алюмохромового катализатора
31 13 30 35 10
Глинистый компонент 36 49 34 35 50
Сумма компонентов 100 100 100 100 100

По данным петрографического анализа содержание кордиерита составляет 75-85% (таблица 2). Кристаллы изометричной, призматической формы (от игольчатой до изометрической, размером от 1-2 мкм до 10 мкм). Кордиерит хорошо окристаллизован и соответствует по показателю преломления чистому кордиериту. Остальные фазы кристаллические в количестве 15-30 мас.% (клиноэнстатит, шпинель, муллит). Структура неоднородная по размеру кристаллов (4-15 мкм). Стекло не обнаружено. Повышенное содержание кордиерита уменьшает ТКЛР и как следствие повышает термостойкость материала.

Таблица 2- Характеристики обожженной керамики

Характеристика керамики № состава Прототип
1 2 3 4 5
ТКЛР·106град-1(20-800°С) 2,98 3,03 3,01 3,30 3,40 3,48
NаОН, 10 % 0,25 0,27 0,26 0,27 0,25 0,26
Н24, 10 % 0,15 0,13 0,14 0,13 0,15 0,14
Содержание кордиерита, % 75 85 82 65 63 40-50
Прочность при сжатии, МПа 1,5 1,6 1,4 1,5 1,4 1,1

Коррозионная стойкость материала, полученного по заявленному способу, находится на уровне прототипа, а прочность выше на 27-45 %.

Применение предложенного состава позволяет упростить и удешевить технологический процесс путем сокращения количества компонентов шихты и применения производственных отходов, повысить прочность и термостойкость материала за счет увеличения содержания кордиерита и уменьшения в результате этого коэффициента термического линейного расширения при сохранении высокой коррозионной стойкости.

Способ получения проницаемого керамического материала с высокой термостойкостью, заключающийся в том, что пенополиуретан пропитывают шликером, включающим обожженный тальк, глинистый и алюмооксидный компоненты и водный раствор поливинилового спирта, сушат и обжигают, отличающийся тем, что в качестве алюмооксидного компонента используют отход производства алюмохромового катализатора дегидрирования изопарафинов, который прокаливают при температуре 1000-1150°С, при содержании компонентов, мас.%:

тальк обожженный 33-38,
прокаленный отход 13–31,
глинистый компонент 34-49



 

Похожие патенты:

Изобретение относится к производству строительной керамики и может быть использовано при изготовлении стеновых и облицовочных изделий: кирпичей, камней, плиток, плит и блоков.
Настоящее изобретение относится к технологиям с применением аэрогеля и может быть использовано для получения теплоизоляционных материалов широкого применения. Технический результат заключается в расширении области применения и получении теплоизоляционных материалов с относительно низким коэффициентом теплопроводности в широком диапазоне температур, улучшенными поглощающими свойствами электромагнитного излучения в области ИК-спектра, повышенной механической прочностью и гибкостью, сниженной осыпаемостью и достигается при получении материала путем изготовления упрочняющей структуры, в которую вводят аэрогель с последующей сушкой для получения целевого теплоизоляционного материала, причем упрочняющую структуру изготавливают в виде волокнистой подложки плотностью 0,001-0,1 г/см3, которая состоит из волокон с диаметром 0,1-20 мкм, для получения аэрогеля предварительно получают золь путем смешивания силана с органическим растворителем и водным раствором кислоты с выдержкой мольного соотношения силан:органический растворитель:H2O:кислота, равным 2:(5-10):(2-8):(1-10)×10-3, и выдерживают а течение 24 часов, после чего в полученный на предыдущей стадии золь при перемешивании вводят дополнительное количество органического растворителя до достижения отношения золя к органическому растворителю 1,2-2 и вводят гелирующий агент - раствор основания с выполнением мольного соотношения силан:основание, равного 1:(1-5)×10-2, и проводят выдержку для гелеобразования в течение 10-60 минут, а затем полученный аэрогель вводят в упрочняющую структуру путем их совместного центрифугирования и производят старение композиционного материала..

Изобретение относится к композиционным пьезоматериалам (КПМ) и может быть использовано для изготовления гидроакустических приёмников, датчиков медицинской ультразвуковой диагностики, эмиссионного контроля, дефектоскопов и других объёмно-чувствительных пьезопреобразователей, а также к технологии изготовления этих материалов.

Изобретение относится к производству строительных материалов, в частности теплоизоляционных материалов на основе пенополиуретана, и может быть использовано для теплоизоляции строительных конструкций различного назначения и для теплоизоляции трубопроводов.

Изобретение относится к фильтрационным мембранам. Представлен монолитный сепарационный элемент для тангенциальной сепарации обрабатываемой текучей среды на фильтрат и ретентат, при этом указанный сепарационный элемент содержит прямолинейную жесткую пористую основу трехмерной структуры, внутри которой выполнен по меньшей мере один канал для протекания потока обрабатываемой текучей среды с целью сбора фильтрата на наружной поверхности основы, при этом наружная поверхность основы имеет постоянный профиль, так что все внешние образующие линии, параллельные центральной оси основы, являются параллельными между собой прямыми линиями, отличающийся тем, что монолитная жесткая пористая основа содержит препятствия, начинающиеся от внутренней стенки канала или каналов, для циркуляции обрабатываемой текучей среды, которые характеризуются идентичностью материала и пористой текстуры с основой, а также непрерывностью материала и пористой текстуры с основой, при этом препятствия, появляясь между первым и вторым положениями вдоль продольной оси канала, создают резкое сужение или схождение в направлении течения обрабатываемой текучей среды в указанном канале, затрудняя или возмущая поток текучей среды, причем указанное резкое сужение имеет радиальную стенку, расположенную перпендикулярно к продольной оси, а указанное схождение имеет стенку, наклоненную относительно продольной оси под углом α, строго превышающим 0° и меньшим 90°.

Изобретение относится к фильтрационным мембранам. Сепарационный элемент для тангенциальной сепарации обрабатываемой текучей среды на фильтрат и ретентат, при этом указанный сепарационный элемент содержит монолитную жесткую пористую основу прямолинейной структуры, в которой выполнены несколько каналов для протекания обрабатываемой текучей среды между входом и выходом для ретентата с целью сбора фильтрата от наружной поверхности основы, при этом монолитная жесткая пористая основа ограничивает препятствия, простирающиеся от внутренних стенок указанных каналов, для потока обрабатываемой текучей среды, которые характеризуются идентичностью материала и пористой текстуры с основой, а также непрерывностью материала и пористой текстуры с основой, при этом указанные препятствия создают вариации проходного сечения канала, когда варьирует по меньшей мере один из следующих критериев: площадь прямого сечения, форма прямого сечения, размеры прямого сечения канала.
Изобретение относится к технологии получения пористого материала из ультрадисперсного оксидного керамического порошка и добавок-порообразователей и может быть использовано для получения фильтрующих керамических материалов или материалов медицинского назначения.

Группа изобретений относится к изготовлению изделий из мультиперфорированных композиционных материалов, то есть изделий, сформированных из волокнистого усилителя, уплотненного матрицей и в которых было реализовано множество перфорационнных отверстий.

Изобретение относится к способам получения пенокерамических фильтров (ПКФ) для очистки жидкого алюминия и его сплавов. Может использоваться в металлургии, литейном производстве.

Группа изобретений относится к промышленности строительных материалов, а именно к способу изготовления фиброармированных пеноблоков и плит для вентилируемых фасадов различной цветовой гаммы, а также пеноблоков, облицованных с одной или нескольких сторон плитами, используемых при изготовлении сборных и монолитных железобетонных изделий и конструкций, и линии для изготовления указанных пеноблоков и плит.
Изобретение относится к промышленности строительных материалов и может быть использовано в производстве керамических стеновых изделий, а именно в производстве пустотелого и полнотелого обыкновенного глиняного кирпича, обжиг которого осуществляют с применением твердого топлива.

Изобретение относится к производству строительной керамики и может быть использовано при изготовлении стеновых и облицовочных изделий: кирпичей, камней, плиток, плит и блоков.

Изобретение относится к композиционным пьезоматериалам (КПМ) и может быть использовано для изготовления гидроакустических приёмников, датчиков медицинской ультразвуковой диагностики, эмиссионного контроля, дефектоскопов и других объёмно-чувствительных пьезопреобразователей, а также к технологии изготовления этих материалов.
Изобретение относится к технологии получения пористого материала из ультрадисперсного оксидного керамического порошка и добавок-порообразователей и может быть использовано для получения фильтрующих керамических материалов или материалов медицинского назначения.
Изобретение относится к технологии получения пористого материала из ультрадисперсного оксидного керамического порошка и добавок-порообразователей и может быть использовано для получения фильтрующих керамических материалов или материалов медицинского назначения.

Изобретение относится к способам получения пенокерамических фильтров (ПКФ) для очистки жидкого алюминия и его сплавов. Может использоваться в металлургии, литейном производстве.

Изобретение относится к способам получения пенокерамических фильтров (ПКФ) для очистки жидкого алюминия и его сплавов. Может использоваться в металлургии, литейном производстве.

Изобретение относится к области производства стеновых строительных материалов и может быть использовано для изготовления фасадных плиток. Технический результат: повышение прочности на сжатие и морозостойкости при сохранении других эксплуатационных характеристик изделий.

Изобретение относится к области производства стеновых строительных материалов и может быть использовано для изготовления фасадных плиток. Технический результат: повышение прочности на сжатие и морозостойкости при сохранении других эксплуатационных характеристик изделий.

Изобретение относится к производству пористых заполнителей для бетонов. Шихта для производства пористого заполнителя содержит, мас.%: глину монтмориллонитовую 83,0-87,0, уголь 1,0-1,5, доломит 10,0-15,0, суперпластификатор С-3 1,0-1,5.

Изобретение относится к изготовлению деталей из керамического материала с использованием аддитивных или стереолитографических технологий. Техническим результатом является обеспечение предотвращения какой-либо деформации деталей при изготовлении, очистке и обжиге.
Наверх