Устройство охлаждения вала свободной турбины газотурбинной установки

Изобретение относится к малогабаритным микрогазотурбинным двигателям наземного применения, выполненным на основе турбокомпрессора от ДВС, и позволяет упростить конструкцию охлаждения вала свободной турбины. Предлагаемое устройство охлаждения вала свободной турбины газотурбинной установки, содержащее корпус с направляющим аппаратом и турбину с валом, снабжено охладителем, выполненным из материалов с высокой теплоотдачей, который плотно закреплен на валу генератора с подшипниковыми опорами, при этом турбина, вращающаяся от газового потока газотурбинного двигателя и приводящая во вращение вал генератора, на конце которого она закреплена, нагревает вал, передавая теплоту охладителю, который рассеивает её в атмосферу и этим предохраняет подшипниковые опоры генератора от перегрева. В результате использования предлагаемого изобретения появляется возможность упростить конструкцию и повысить эффективность охлаждения путём установки на вал, между турбиной и подшипниковыми опорами генератора, вращающегося охладителя. 3 ил.

 

Изобретение относится к малогабаритным микрогазотурбинным двигателям наземного применения, выполненным на основе турбокомпрессора от ДВС, и позволяет упростить конструкцию охлаждения вала свободной турбины.

Известен турбокомпрессор газотурбинного двигателя, в котором турбокомпрессор газотурбинного двигателя выполнен с расположенной под камерой сгорания задней опорой с подшипником (патент РФ № 2300003, МПК F02C7/06, F01D 25/16, опубл. 27.05.2007). В валу турбокомпрессора и в примыкающих к валу деталях - лабиринтах и фланцах выполнены перед подшипником отверстия забора, а за подшипником - отверстия выпуска охлаждающего воздуха. Отверстия забора связаны с отверстиями выпуска через перепускные отверстия. Перед отверстиями выпуска охлаждающего воздуха за подшипником на валу турбокомпрессора выполнен бурт с уменьшенным кольцевым зазором между валами. Отверстия забора воздуха наклонены навстречу потоку, направленному в сторону турбины, а отверстия выпуска - по потоку.

Недостатком известного турбокомпрессора является низкая надежность и экономичность двигателя из-за наличия отверстий выпуска воздуха через вал (концентраторы напряжений).

Известен турбокомпрессор газотурбинного двигателя, где турбокомпрессор газотурбинного двигателя, состоящий из компрессора, турбины с расположенной между ними задней опорой с подшипником, установленной под камерой сгорания (патент РФ № 2369759, МПК F02C 7/06, опубл. 10.10.2009). Вокруг масляной полости расположена первая полость охлаждения. Над полостью между внутренним и наружным фланцами расположена вторая полость охлаждения. Между первой и второй полостями находится полость сброса. Между второй и полостью сброса обечайками образована третья полость охлаждения, соединенная с полостью каналами охлаждения во внутреннем фланце над внутренним лабиринтом. Снаружи второй полости образована обечайками четвертая полость охлаждения. В наружном фланце над наружным лабиринтом выполнены каналы охлаждения. Вокруг масляных труб организованы полости охлаждения. Путем охлаждения фланцев уменьшаются зазоры в лабиринтных уплотнениях, что повышает надежность и экономичность двигателя.

Недостатком известного турбокомпрессора является наличие большого количество деталей, что приводит к усложнению конструкции и снижению ее надежности.

Наиболее близким по технической сущности к предлагаемому изобретению является устройство охлаждения свободной турбины газотурбинной установки, содержащее турбину с валом и направляющий аппарат (патент РФ № 2572515, МПК F01D5/08, опубл. 20.01.2016 г.). В корпусе между направляющим аппаратом и первым подшипником выполнены два диаметрально расположенных отверстия с воздуховодами. По одному из воздуховодов подается холодный воздух к валу турбины, а по другому воздуховоду отводится нагретый валом воздух. В районе отверстий с воздуховодами вал имеет не проходящие через центр вращения вала поперечные отверстия, расположенные на разных поперечных сечениях вала и имеющие равное угловое смещение. Поперечные отверстия выполнены с возможностью захватывания при вращении вала холодного воздуха и пропускания его через тело вала, тем самым охлаждая последний. В районе подвода воздуха вал имеет увеличенный диаметр, площадь поперечного сечения которого больше на величину площади продольного сечения поперечного отверстия в этом сечении.

Недостатком известного устройства является сложная конструкция вала свободной турбины, предполагающая механизм подачи охлаждающего воздуха.

Задачей предлагаемого изобретения является упрощение конструкции и повышение эффективности охлаждения вала свободной турбины малогабаритных микрогазотурбинных двигателей наземного применения.

В результате использования предлагаемого изобретения появляется возможность упростить конструкцию и повысить эффективность охлаждения путём установки на вал, между турбиной и подшипниковыми опорами генератора, вращающегося охладителя.

Вышеуказанный технический результат достигается тем, что предлагаемое устройство охлаждения вала свободной турбины газотурбинной установки, содержащее корпус с направляющим аппаратом и турбину с валом, согласно изобретению, снабжено охладителем, выполненным из материалов с высокой теплоотдачей, который плотно закреплен на валу генератора с подшипниковыми опорами, при этом турбина, вращающаяся от газового потока газотурбинного двигателя, и приводящая во вращение вал генератора на конце которого она закреплена, нагревает вал, передавая теплоту охладителю, который рассеивает её в атмосферу и этим предохраняет подшипниковые опоры генератора от перегрева.

Сущность предлагаемого изобретения поясняется фиг. 1, 2 и 3, где на фиг.1 представлена общая схема свободной турбины, на фиг.2 представлен продольный разрез вращающегося охладителя, на фиг.3 представлен поперечный вид вращающегося охладителя.

Устройство охлаждения вала свободной турбины газотурбинной установки содержит корпус свободной турбины 1 с направляющим аппаратом 8, турбину 2, вал генератора 3, охладитель 4, подшипниковые опоры 5, генератор 6, газовый поток 7.

В корпусе свободной турбины 2 с направляющим аппаратом 8 расположена турбина 2, на которую воздействует теплотой газовый поток 7, турбина 2 закреплена на валу 3, на котором плотно закреплён охладитель 4, и который, в свою очередь, размещён на подшипниковых опорах 5, установленных в генераторе 6.

Работает устройство охлаждения вала свободной турбины газотурбинной установки следующим образом.

Газовый поток 7 с высокой температурой подается на турбину 2 расположенную в корпусе свободной турбины 1 с направляющим аппаратом 8, которая приводится во вращение и нагреваясь, передаёт вращение и теплоту валу генератора 3, на конце которого она закреплена. Разогретый вал генератора 3, в свою очередь, передает теплоту охладителю 4, который вращаясь, рассеивает теплоту в атмосферу. В результате, вал генератора 3, в районе подшипниковых опорах 5 генератора 6 имеет низкую температуру, что предохраняет подшипниковые опоры 5 от перегрева.

Устройство охлаждения вала свободной турбины газотурбинной установки, содержащее корпус с направляющим аппаратом и турбину с валом, отличающееся тем, что снабжено охладителем, выполненным из материалов с высокой теплоотдачей, который плотно закреплен на валу генератора с подшипниковыми опорами, при этом турбина, вращающаяся от газового потока газотурбинного двигателя и приводящая во вращение вал генератора, на конце которого она закреплена, нагревает вал, передавая теплоту охладителю, который рассеивает её в атмосферу и этим предохраняет подшипниковые опоры генератора от перегрева.



 

Похожие патенты:

Изобретение относится к газотурбинным двигателям, а именно к системам наддува опор. Известный двухконтурный газотурбинный двигатель, содержащий систему наддува опор, включающую полости наддува опор и предмасляные полости компрессора низкого давления и компрессора высокого давления, полость наддува опор и предмасляные полости турбины, клапан суфлирования компрессора, клапан суфлирования турбины, питающий воздуховод, выполненный единым для всей системы наддува опор двигателя, сообщенный с клапаном переключения и, по меньшей мере, с двумя входами, разнесенными вдоль газовоздушного тракта, один из входов которого сообщен с одной из ступеней компрессора высокого давления, а другой установлен в газовоздушном тракте за компрессором низкого давления, полости наддува опор компрессора низкого давления и компрессора высокого давления и полость наддува опор турбины воздуховодами сообщены друг с другом и через подвижные уплотнения с газовоздушным трактом двигателя, воздуховод, сообщающий полость наддува компрессора высокого давления и полость наддува турбины, расположен в межвальной зоне, образованной валами высокого и низкого давления, предмасляные полости сообщены с одноименными полостями наддува и полостями маслосистемы через подвижные уплотнения, предмасляные полости компрессоров низкого и высокого давления сообщены воздуховодами с клапаном суфлирования компрессора, а предмасляные полости турбины сообщены воздуховодами с клапаном суфлирования турбины, по предложению, в межвальной зоне полость наддува турбины объединена с предмасляной полостью турбины, клапан суфлирования компрессора и клапан суфлирования турбины своими выходами сообщены с областью низкого давления, при этом отношение газодинамической площади проходного сечения клапана суфлирования компрессора μКFК к газодинамической площади проходного сечения клапана суфлирования турбины μTFT равно 0,4…0,7, где μК - коэффициент расхода клапана суфлирования компрессора; FК - геометрическая площадь проходного сечения клапана суфлирования компрессора; μT - коэффициент расхода клапана суфлирования турбины; FT - геометрическая площадь проходного сечения клапана суфлирования турбины.

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода газоперекачивающих агрегатов и энергоустановок, и может быть использовано при разработке энергоустановок с охлаждением масла в замкнутой циркуляционной системе и для модернизации нагревательных систем для поддержания рабочей температуры масла в маслобаках газотурбинных двигателей.

Изобретение относится к авиационной технике, а именно к системе охлаждения подшипников турбин газотурбинного двигателя самолета. Техническим результатом предложенной системы охлаждения является обеспечение работы газотурбинного двигателя на повышенных оборотах турбин, что дает возможность повысить мощность газотурбинного двигателя.

Группа изобретений относится к нефтегазовой области. В способе охлаждения ГТД ГПА двигатель снабжают защитным кожухом, к которому подводят нагнетающий и отводящий воздуховоды.

Изобретение относится к системам вентиляции. Авиационная силовая установка, содержащая двигатель, гондолу, окружающую двигатель, и систему тушения пожара, который может возникнуть в двигателе и/или в гондоле, причем эта система пожаротушения содержит средства подачи огнегасящего вещества по меньшей мере в один трубопровод распределения огнегасящего вещества, который выходит в полость двигателя и/или в полость гондолы, отличающаяся тем, что дополнительно содержит средства подачи воздуха в упомянутый по меньшей мере один трубопровод с целью вентиляции полости или полостей.

Использование: изобретение относится к авиадвигателестроению, а именно к способам повышения ресурса и основных параметров за счет введения в конструкцию двигателя систем охлаждения турбин.

Изобретение относится к газотурбинным двигателям и, более конкретно, к системам подачи охлаждающей текучей среды в газотурбинных двигателях. Раскрыта жаропрочная коллекторная система (10) для внутреннего кожуха (12) между компрессором (14) и турбиной в сборе (16).

Изобретение относится к авиационной технике, а именно к турбореактивному двигателю самолета с системой охлаждения турбин высокого давления. Техническим результатом, на достижение которого направлено заявленное изобретение, является повышение эффективности охлаждения турбин высокого давления, что способствует повышению мощности турбореактивного двигателя.

Изобретение относится к роторам турбин газотурбинных двигателей авиационного и наземного применения. Ротор турбины содержит диск турбины, на ободе которого верхним байонетным соединением установлен дефлектор диска, ступица которого выполнена с цилиндрическим упругим элементом и с щелевой полостью относительно цилиндрического упругого элемента диска.

Изобретение относится к авиационному двигателестроению, в частности к малоразмерным газотурбинным двигателям летательных аппаратов. Газотурбинная силовая установка летательного аппарата содержит расположенные в корпусе воздухозаборный канал с полым центральным обтекателем, стойками и антиобледенительным устройством, двигатель с выходным валом, планетарный редуктор с механизмом переключения и стартер-генератор, расположенный в полости центрального обтекателя и выполненный в виде обратимой электрической машины, статор которой закреплен на корпусе, а ротор - через планетарный редуктор подключен к выходному валу двигателя.

Устройство для инжекционного охлаждения стенки включает в себя инжекционный рукав и стенку, подвергающуюся воздействию горячего газа во время работы. Инжекционный рукав по меньшей мере частично расположен в нагнетательной камере и расположен на расстоянии от стенки для образования пути охлаждающего потока между стенкой и инжекционным рукавом таким образом, что сжатый газ, инжектируемый из нагнетательной камеры через первое отверстие в охлаждающем рукаве, во время работы обдувает стенку и протекает как поперечный поток в направлении к выходу у выходного конца пути охлаждающего потока.

Устройство (66, 112) для газовой турбины (10), содержащее: часть (68) диска ротора, содержащую зацепляющий участок (70); часть (72) лопатки, содержащую зацепляющий участок (74), причем соответствующие зацепляющие участки (70, 74) зацепляются для фиксации по окружности и в радиальном направлении части (68) диска ротора и части (72) лопатки относительно друг друга; фиксирующую пластину (96), соединенную с частью диска ротора и с частью лопатки, чтобы фиксировать в осевом направлении часть лопатки относительно части диска ротора, при этом фиксирующая пластина (96) разнесена в осевом направлении на расстояние (D) от осевого конца (98) зацепляющих участков (70, 74) части (68) диска ротора и/или части (70) лопатки, оставляя пустое пространство (V) в осевом направлении между зацепляющими участками (70, 74) и фиксирующей пластиной (96).

Объектом изобретения является ротор турбины для газотурбинного двигателя, при этом упомянутый ротор содержит: входной диск (1) турбины; выходной диск (5) турбины; кольцевой фланец (b); первую обечайку (11), соединяющую входной диск турбины с кольцевым фланцем; вторую обечайку (51), соединяющую выходной диск турбины с кольцевым фланцем; устройство разделения воздушных потоков, содержащее: первую часть (3), образующую первое кольцо, расположенное между входным диском турбины и выходным диском турбины; вторую часть (4), образующую второе кольцо и имеющую первый участок, расположенный напротив выходного диска турбины, и второй участок, расположенный между первой обечайкой и второй обечайкой; и зону (6) теплоизоляции, расположенную между первой частью и второй частью.

Ротор осевой газовой турбины содержит диск с охлаждаемыми рабочими лопатками и штифтами, покрывной диск, образующий каналы подвода охлаждающего воздуха к хвостовой части лопаток, оба диска снабжены кольцевыми фланцами для крепления штифтов, установленными с радиальным зазором относительно друг друга, а в месте размещения каждого штифта установлена скоба, один конец которой размещен в зазоре, а другой - со стороны шляпки штифта.

Изобретение относится к авиационной технике, а именно к турбореактивному двигателю самолета с системой охлаждения турбин высокого давления. Техническим результатом, на достижение которого направлено заявленное изобретение, является повышение эффективности охлаждения турбин высокого давления, что способствует повышению мощности турбореактивного двигателя.

Уплотнительный узел между путем горячего газа и полостью для диска в турбинном двигателе содержит неповоротный узел направляющих лопаток, поворотный узел рабочих лопаток и кольцеобразный элемент в виде крыла.

Уплотнительный узел между путем горячего газа и полостью для диска в турбинном двигателе содержит неповоротный узел направляющих лопаток, поворотный узел рабочих лопаток и кольцеобразный элемент в виде крыла.

Изобретение относится к роторам турбин газотурбинных двигателей авиационного и наземного применения. Ротор турбины содержит диск турбины, на ободе которого верхним байонетным соединением установлен дефлектор диска, ступица которого выполнена с цилиндрическим упругим элементом и с щелевой полостью относительно цилиндрического упругого элемента диска.

Изобретение относится к роторам турбин газотурбинных двигателей авиационного и наземного применения. Ротор турбины содержит диск турбины, на ободе которого верхним байонетным соединением установлен дефлектор диска, ступица которого выполнена с цилиндрическим упругим элементом и с щелевой полостью относительно цилиндрического упругого элемента диска.

Изобретение относится в основном к газотурбинным двигателям, а конкретнее – к системе активного управления перепускным расходом сжатого воздуха вокруг одного или более уплотнения между статором и узлом ротора первой ступени для подачи продувочного воздуха в полость обода.

Изобретение относится к газотурбинным двигателям, а именно к системам наддува опор. Известный двухконтурный газотурбинный двигатель, содержащий систему наддува опор, включающую полости наддува опор и предмасляные полости компрессора низкого давления и компрессора высокого давления, полость наддува опор и предмасляные полости турбины, клапан суфлирования компрессора, клапан суфлирования турбины, питающий воздуховод, выполненный единым для всей системы наддува опор двигателя, сообщенный с клапаном переключения и, по меньшей мере, с двумя входами, разнесенными вдоль газовоздушного тракта, один из входов которого сообщен с одной из ступеней компрессора высокого давления, а другой установлен в газовоздушном тракте за компрессором низкого давления, полости наддува опор компрессора низкого давления и компрессора высокого давления и полость наддува опор турбины воздуховодами сообщены друг с другом и через подвижные уплотнения с газовоздушным трактом двигателя, воздуховод, сообщающий полость наддува компрессора высокого давления и полость наддува турбины, расположен в межвальной зоне, образованной валами высокого и низкого давления, предмасляные полости сообщены с одноименными полостями наддува и полостями маслосистемы через подвижные уплотнения, предмасляные полости компрессоров низкого и высокого давления сообщены воздуховодами с клапаном суфлирования компрессора, а предмасляные полости турбины сообщены воздуховодами с клапаном суфлирования турбины, по предложению, в межвальной зоне полость наддува турбины объединена с предмасляной полостью турбины, клапан суфлирования компрессора и клапан суфлирования турбины своими выходами сообщены с областью низкого давления, при этом отношение газодинамической площади проходного сечения клапана суфлирования компрессора μКFК к газодинамической площади проходного сечения клапана суфлирования турбины μTFT равно 0,4…0,7, где μК - коэффициент расхода клапана суфлирования компрессора; FК - геометрическая площадь проходного сечения клапана суфлирования компрессора; μT - коэффициент расхода клапана суфлирования турбины; FT - геометрическая площадь проходного сечения клапана суфлирования турбины.
Наверх