Способ определения быстродействия систем автоматического управления

Изобретение относится к области автоматизированных систем управления технологическими процессами (АСУ ТП), в частности для диагностики систем автоматического управления (САУ). Задачей полезной модели является повышение надежности работы систем автоматического управления. Поставленная задача решается, а технический результат достигается тем, что в системах автоматического управления, содержащих контроллер, модули входных сигналов (сигналов с датчиков), модули выходных сигналов (сигналы управления исполнительными механизмами) и частотные модули (преобразователи частоты), путем установки электрического проводника (перемычки) соединяют между собой один резервный выход модуля выходных дискретных сигналов, один резервный вход модуля входных дискретных сигналов и один резервный вход частотного модуля, изменяют алгоритм работы контроллера таким образом, что с резервного выхода модуля выходных сигналов подается логическая единица на резервный вход модуля входных сигналов, при обнаружении единицы на резервном входе модуля входных дискретных сигналов контроллер инвертирует сигнал на резервном выходе модуля выходных дискретных сигналов в логический ноль, при обнаружении на резервном входе модуля входных дискретных сигналов нуля инвертирует его на выходном модуле дискретных сигналов обратно в единицу, повторяя данный цикл непрерывно, частотный модуль определяет частоту сигнала, используя которую, через формулу рассчитывает быстродействие работы системы. Техническим результатом при реализации заявленного решения является непрерывное определение быстродействия систем автоматического управления. 3 ил.

 

Изобретение относится к области автоматизированных систем управления технологическими процессами (АСУ ТП), в частности для диагностики систем автоматического управления (САУ).

Существуют системы автоматического управления компрессорным цехом и газоперекачивающими агрегатами. Одна из основных характеристик работы данных систем – их быстродействие. Увеличение времени быстродействия является главным предупреждающим критерием определения работоспособности АСУ ТП. При поиске неисправностей в таких схемах приходится проверять быстродействие их работы и сравнивать его с паспортными данными.

Известен способ определения быстродействия электроизмерительных приборов, который заключается в том, что на вход прибора подают прямоугольные периодические импульсы с длительностью, равной половине периода, и с уровнями, соответствующими начальной и конечной отметкам шкалы прибора [1]. Недостатками данного способа являются:

- невозможность непрерывного определения быстродействия работы прибора (системы);

- применение дополнительных устройств для определения быстродействия работы прибора (системы).

Задачей полезной модели является повышение надежности работы систем автоматического управления.

Технический результат - непрерывное определение быстродействия систем автоматического управления.

Поставленная задача решается, а технический результат достигается тем, что в системах автоматического управления, содержащих контроллер, модули входных сигналов (сигналов с датчиков), модули выходных сигналов (сигналы управления исполнительными механизмами) и частотные модули (преобразователи частоты) путем установки электрического проводника (перемычки) соединяют между собой один резервный выход модуля выходных дискретных сигналов, один резервный вход модуля входных дискретных сигналов, и один резервный вход частотного модуля, изменяют алгоритм работы контроллера таким образом, что с резервного выхода модуля выходных сигналов подается логическая единица на резервный вход модуля входных сигналов, при обнаружении единицы на резервном входе модуля входных дискретных сигналов, контроллер инвертирует сигнал на резервном выходе модуля выходных дискретных сигналов в логический ноль, при обнаружении на резервном входе модуля входных дискретных сигналов нуля, инвертирует его на выходном модуле дискретных сигналов обратно в единицу, повторяя данный цикл непрерывно, частотный модуль определяет частоту сигнала, используя которую, через формулу рассчитывает быстродействие работы системы.

На фигуре 1 представлена структурная схема САУ.

На фигуре 2 представлена блок-схема алгоритма определения быстродействия САУ.

Контроллер 1 в соответствии с заданным алгоритмом работы, подает логическую единицу (например, путем замыкания реле и появлением на выходе напряжения 24 В) через резервный выход модуля выходных дискретных сигналов DO («discrete output» [дискретный выход. - англ.]) 2, клеммный соединитель 3, перемычку 4 и клеммный соединитель 5 на модуль входных дискретных сигналов DI («discrete input» [дискретный вход. - англ.]) 6. При обнаружении единицы на резервном входе модуля входных дискретных сигналов 6, контроллер 1, в соответствии с заданным алгоритмом работы, инвертирует сигнал в логический ноль и передает его через резервный выход модуля выходных дискретных сигналов 2 через резервный выход модуля выходных дискретных сигналов 6. При обнаружении нуля на резервном входе модуля входных дискретных сигналов 6, контроллер 1, в соответствии с заданным алгоритмом работы, инвертирует сигнал в логическую единицу, повторяя непрерывно данный цикл. Преобразователь частоты 9 через клеммный соединитель 8 и перемычку 7, принимает получившийся частотный сигнал.

На фигуре 3 представлен график частотного (периодического сигнала) прямоугольной формы (меандра) с постоянной амплитудой, поступающего на преобразователь частоты для дальнейшего расчета быстродействия системы, где по оси ординат отложено напряжение Un на выходе коммутируемого резервного выхода модуля выходных дискретных сигналов, а по оси ординат время t, в течении которого сигнал (меандр) поступает на преобразователь частоты, T – период, а τ – время длительности импульса, в течении которого состояние резервного выхода модуля выходных дискретных сигналов реагирует на входной сигнал, поступающий на резервный вход модуля входных резервных сигналов, оно и является временем быстродействия системы.

Вычисляя частоту сигнала на резервном входе частотного модуля (преобразователя частоты), время быстродействия рассчитывается им же программно по следующей формуле:

где t - время длительности одного периода;

где ν - частота колебаний сигнала.

Так как расчет времени быстродействия происходит непрерывно, полученное значение контроллером может сравниваться с паспортным значением времени быстродействия на определенный вид САУ и при его расхождении может выводиться предупредительное сообщение на автоматизированное рабочее место оператора.

Список источников:

1. Пат.746364 СССР, М Кл2 G01R 35/00. Способ определения быстродействия электроизмерительных приборов / Лысенков А.И.: заявитель и патентообладатель Лысенков А.И. - №2483731/18-21; заявл. 05.05.1977; опубл. 07.07.1980, Бюл. №25. - 2 с.: 1 ил.

Способ определения быстродействия систем автоматического управления, реализуемый с помощью системы, включающей в себя контроллер, модуль входных сигналов, модуль выходных сигналов, частотный модуль, заключающийся в том, что резервные входы модуля входных дискретных сигналов и частотного модуля и резервный выход модуля выходных дискретных сигналов соединяют между собой электрическим проводником, изменяют алгоритм работы контроллера таким образом, что с резервного выхода модуля выходных сигналов подаётся логическая единица на резервный вход модуля входных сигналов, при обнаружении единицы на резервном входе модуля входных дискретных сигналов контроллер инвертирует сигнал на резервном выходе модуля выходных дискретных сигналов в логический ноль, при обнаружении на резервном входе модуля входных дискретных сигналов нуля инвертирует его на выходном модуле дискретных сигналов обратно в единицу, повторяя данный цикл непрерывно, частотный модуль определяет частоту сигнала, используя значение которой, рассчитывает быстродействие работы системы.



 

Похожие патенты:

Способ позволяет осуществлять технологическую подготовку операционных карт мелкосерийного производства на основе абстрактных (символьных) моделей компонент, составляющих изготовляемую деталь, в которых символьная параметризация обеспечивает инвариантность моделей относительно геометрических размеров, режимов обработки, используемого инструментария и технологической оснастки.

Изобретение относится к вычислительной технике. Технический результат − расширение эксплуатационных возможностей электроустановки, повышение надежности электрической системы.

Изобретение относится к технике связи, системам автоматизации и информатики, а именно к контроллеру, выполняющему функции мониторинга и управления объектами инженерной инфраструктуры.

Группа изобретений относится к средствам управления двигателем внутреннего сгорания. Технический результат – обеспечение возможности управления двигателем внутреннего сгорания.

Изобретение относится к цифровым вычислительным системам для определения показателей качества сравниваемых сложных систем, средств и изделий с множеством разнородных показателей.

Изобретение относится к области электроэнергетики. Способ цифрового управления процессом мониторинга, технического обслуживания и ремонта воздушных линий электропередачи включает в себя сбор информации о параметрах ВЛ при помощи датчиков и роботизированных устройств, трёхмерное представление ВЛ, хранение информации о состоянии элементов ВЛ в пополняемой информационной системе в виде цифровой модели ВЛ, состоящей из трехмерных моделей элементов ВЛ и отражающей текущее состояние элементов ВЛ с отображением имеющихся дефектов, а также прогнозируемого времени возникновения возможных дефектов.

Система формирования координат воздушного судна в условиях неполной и неточной навигационной информации содержит блок первичной фильтрации, блок формирования модели случайного процесса изменения координат воздушного судна, блок прогнозирования координат воздушного судна при отсутствии данных источников навигационной информации, мультиплексор, блок оценивания регулярности поступления данных источников навигационной информации, блок оценивания соответствия данных источников навигационной информации и сформированной модели случайного процесса изменения координат воздушного судна в полете, соединенные определенным образом.

Изобретение относится к области техники и информатики. В способе управления технической системой при помощи удержания точки оптимума состояния системы на агрегированных двумерных и трехмерных группах параметров, накапливают данные о функционировании технической системы; выбирают одну из моделей функционирования отдельных агрегатов или их подсистем; агрегируют данные в группы параметров и получают аппроксимацию показателей к непрерывной функции.

Изобретение относится к области техники и информатики. В способе предсказания состояния технической системы при помощи аппроксимации ее параметров к непрерывной функции на основе данных о функционировании агрегатов накапливают данные о функционировании; выбирают одну из моделей функционирования отдельных агрегатов, допускающую представление в виде непрерывной функции.

Настоящее изобретение относится к способу определения режима выбросов газотурбинного двигателя (10). Для обеспечения надежной работы газотурбинного двигателя (10) способ определения режима выбросов содержит несколько этапов.

Изобретение относится к технике радиофизических измерений и может быть использовано для измерения в миллиметровом участке спектра собственного теплового излучения разнообразных быстропротекающих газодинамических процессов, развивающихся в радиопрозрачных объектах.

Изобретение относится к измерительной технике и предназначено для проведения в автоматическом режиме метрологической поверки и аттестации каналов измерения сигналов тензорезисторных и терморезисторных датчиков быстродействующих измерительных систем, в которых измерительные и управляющие устройства соединены соответствующими магистралями с коммутаторами датчиков.

Изобретение относится к области измерений индукции магнитного поля с помощью магнитометра. Способ определения характеристики феррозонда при температурных испытаниях дополнительно содержит этапы, на которых феррозонд размещают в магнитный экран, магнитный экран с феррозондом устанавливают в термокамеру, подключают источник постоянного тока к сигнальной обмотке, устанавливают ряд величин постоянного тока в сигнальной обмотке феррозонда и измеряют ряд напряжений второй гармоники в выходном сигнале феррозонда измерительным устройством при нормальной температуре в термокамере, устанавливают температуру в термокамере равной предельной рабочей температуре феррозонда, через заданное время устанавливают аналогичный ряд величин постоянного тока в сигнальной обмотке феррозонда и измеряют ряд напряжений второй гармоники в выходном сигнале феррозонда измерительным устройством при предельной рабочей температуре феррозонда.

Изобретение относится к контрольно-измерительной технике и может быть использовано при аттестации электроискровых дефектоскопов, используемых для контроля изоляции кабельных изделий.

Изобретение относится к радиоизмерительной технике и может быть использовано при калибровке измерителей комплексных коэффициентов передачи СВЧ-устройств с преобразованием частоты.

Изобретение относится к тестированию устройств энергетической системы, например защитных устройств. Сущность: энергетическая система имеет входы (39), которые могут быть соединены гальваническим образом с по меньшей мере одним трансформатором (20, 28, 29) тока и по меньшей мере одним трансформатором (10, 18, 19) напряжения.

Изобретение относится к измерительной технике и может быть использовано для частотной погрешности бесконтактных термоэлектрических преобразователей, применяемых для измерения высокочастотного тока, наведенного в цепях электрического задействования пиротехнических и взрывных устройств объекта при испытаниях его на воздействие высокочастотного электромагнитного поля.

Техническое решение относится к способам калибровки измерительных средств, а более конкретно – к способам калибровки измерительных средств в приложении к нестационарным процессам.

Изобретение относится к калибровке инструментов, используемых для измерения поведения сигналов. Технический результат – получение характеристики сети и выполнение калибровки сети с неподдерживаемыми типами разъема, которые не отслеживают в соответствии с известными стандартами.

Изобретение относится к метрологии, в частности к устройству для калибровки системы измерения мощности для силовых трансформаторов. Устройство содержит трансформатор высокого напряжения, преобразователь контрольного напряжения, контрольный измерительный кабель, устройство оценки контрольных результатов, сильноточный трансформатор, преобразователь контрольного тока, устройство, контейнер, сильноточную цепь, измерительные кабели, операторную, дверцы, удлиняемое сильноточное соединение, линию передачи данных.
Наверх