Способ строительства накопительного амбара

Изобретение относится к нефтяной промышленности, а именно способу сооружения накопительного амбара. Способ строительства накопительного амбара включает выемку грунта, сооружение обвалования и укладку на дно и стенки амбара гидроизоляционного экрана. Внутрь последовательно помещают сетки от более мелкой к крупной с провисом так, чтобы между сетками образовался зазор. Количество сеток и размер ячеек выбирают эмпирическим путем из возможности прохода жидкости и нефти на дно амбара с последовательным разделением по крупности механических примесей. По краям сетки фиксируют и сверху изолируют гидроизоляционным материалом, причем в одном месте оставляют канал, перекрываемый сверху гидроизоляционным материалом для ввода под сетки ко дну трубы для отсасывания жидкости и нефти из амбара. Технический результат заключается в последовательном отделении механических примесей от жидких отходов и/или нефти, исключая возможность взаимодействия этих примесей с гидроизоляционным экраном. 1 ил.

 

Изобретение относится к нефтяной промышленности и может найти применение при обустройстве нефтяного месторождения, в частности при строительстве накопительного амбара, предназначенного для размещения отходов бурения скважин и/или несанкционированном изливе нефти.

Известен способ захоронения отходов бурения, включающий выбор геометрических размеров земляного амбара (патент RU № 2201949, МПК C09K 7/00, B09B 3/00, E02D 31/00, опубл. 10.04.2003 в Бюл. № 10), снятие плодородного слоя почвы и складирование ее во временные отвалы на период строительства скважины, отрывку земляного котлована, возведение по его периметру обвалования, гидроизоляцию дна и стенок котлована, складирование отходов бурения в образовавшемся амбаре, расслоение в амбаре отходов бурения на загущенную и осветленную фазы, удаление из амбара осветленной жидкой фазы, введение в загущенную фазу отходов бурения консолидирующего материала и их перемешивание, обезвреживание загущенной фазы отходов путем отверждения, засыпку минеральным грунтом, возврат из временных отвалов и равномерное распределение плодородного слоя почвы на минеральный грунт, отличающийся тем, что на предпроектной стадии строительства скважины устанавливают по данным инженерно-геологических изысканий литологический разрез буровой площадки, на стадии проектирования строительства скважины осуществляют аналитический расчет объема земляного амбара, предусматривающий увеличение объема амбара по отношению к планируемому объему складируемых в нем отходов на 15-20% - для отходов эксплуатационного бурения и на 25-35% - для отходов разведочного бурения, а при выборе геометрических размеров учитывают минимально допустимое расстояние между дном амбара и наивысшим уровнем грунтовых вод, а также минимально допустимую глубину верхнего слоя планируемых к захоронению отвержденных отходов, перед обезвреживанием осуществляют в лабораторных условиях выбор консолидирующего материала и подбор его соотношения с массой отверждаемых отходов, обеспечивающие получение механической прочности отвержденной смеси на сжатие до 0,2 МПа через 28 суток после введения консолидирующего материала, а засыпку минеральным грунтом отвержденных отходов производят на глубине их верхнего слоя, превышающей толщину плодородного слоя почвы в районе строительства скважины не менее чем на 1,0 м.

Недостатками данного способа являются сложность реализации из-за большого количества сложных операций, отсутствие вывоза отходов, что требует большого объема земляного котлована, а при нарушении целостности гидроизоляции со временем может привести к загрязнению почвы.

Наиболее близким является способ строительства накопительного амбара (патент RU № 2272869, МПК E02D 31/00, E02D 31/02, E02D 31/04, опубл. 27.03.2006 в Бюл. № 9), включающий выемку грунта, сооружение обвалования и укладку на дно и стенки амбара гидроизоляционного экрана из пленочного материала со сварными швами, причем экран выполняют с запасом размеров и проклеивают полосами полимерной липкой ленты с другой стороны перпендикулярно расположенным наружу сварным швам с расстоянием между полосами не более 3 м и выводом полос на наружную сторону гидроизоляционного экрана, при этом один край гидроизоляционного экрана закрепляют на бровке амбара монтажными скобами и присыпают по всей длине грунтом, производят постепенную укладку экрана сварными швами наружу без натяжения на дно и стенки амбара до противоположной бровки, пригружают края экрана по ширине и формируют гофру на бровке амбара по всему периметру, фиксируют гофру грунтом, закрепляют свободные края уложенного гидроизоляционного экрана по всему периметру амбара монтажными скобами и присыпают грунтом, причем свободные края экрана в местах установки монтажных скоб подворачивают в два слоя, а на дно амбара по периметру укладывают пригруз, при этом размеры гидроизоляционного экрана рассчитывают по формулам

А = а + 2,2с + К;

В = в + 2,2с + К,

где А - длина экрана;

В - ширина экрана;

а - длина амбара;

с - глубина амбара;

в - ширина амбара;

К - коэффициент, учитывающий допуск на крепление экрана и формирование гофры, К = 2 - 2,5

кроме того, на дне и стенках амбара в местах наличия каменистого грунта располагают защитные экраны из тканого материала.

Недостатком данного способа является отсутствие предварительного последовательного разделения крупной породы, шлама и песка в самом амбаре, что часто приводит при периодическом оборе жидких отходов бурения и нефтепродуктов к поломке засорению откачивающих труб и насосного оборудования, а при частом взаимодействии с гидроизоляционном экраном – к нарушению его целостности и, как следствие, загрязнению грунта.

Технической задачей предполагаемого изобретения является создание способа строительства накопительного амбара, позволяющего последовательно отделять механические примеси от жидких отходов и/или нефти, исключая возможность взаимодействия этих примесей с гидроизоляционным экраном.

Техническая задача решается способом строительства накопительного амбара, включающим выемку грунта, сооружение обвалования и укладку на дно и стенки амбара гидроизоляционного экрана

Новым является то, что внутрь последовательно помещают сетки от более мелкой к крупной с провисом так, что между сетками образовался зазор, а количество сеток и размер ячеек выбирают эмпирическим путем из возможности прохода жидкости и нефти на дно амбара с последовательным разделением по крупности механических примесей, по краям сетки фиксируют и сверху изолируют гидроизоляционным материалом, причем в одном месте оставляют канал, перекрываемый сверху гидроизоляционным материалом для ввода под сетки ко дну трубы для отсасывания жидкости и нефти из амбара.

На чертеже изображена схема амбара в разрезе.

Способ строительства накопительного амбара 1 включает выемку грунта 2, сооружение обвалования (не показано) и укладку на дно и стенки амбара 1 гидроизоляционного экрана 3 (на виды экрана и способы их укладки автор не претендует). Внутрь амбара 1 последовательно помещают сетки 4, 5 и 6 от более мелкой 4 к крупной 6 с провисом так, что между сетками образовался зазор h1 и h2. Количество сеток 4, 5 и 6 (обычно две или три сетки достаточно для месторождений Республики Татарстан) и размер ячеек выбирают эмпирическим путем из возможности прохода жидкости и нефти 7 на дно амбара 1 с последовательным разделением по крупности механических примесей, которые остаются в соответствующих сетках. По краям сетки фиксируют (на способы фиксации автор не претендует) и сверху изолируют гидроизоляционным материалом 8. В одном месте оставляют канал 9, перекрываемый сверху гидроизоляционным материалом – клапаном 10 для ввода под сетки ко дну амбара 1 трубы 11 (показана условно) для отсасывания жидкости и нефти из амбара 1.

Конструктивные элементы и технологические соединения, не влияющие на работоспособность амбара, на чертеже не указаны или указаны условно.

Пример конкретного выполнения.

Извлекли грунт 2 до получения амбара 1 необходимого объема и формы (согласно проектной документации), произвели обвалование. Предварительно стены и дно укрепили сеткой с ячейкам 4×4 из тканевых материалов (мешковины), сверху уложили и зафиксировали по бровке гидроизоляционный экран 3 из пленочного материала. Внутрь с провисом последовательно установили сетки 4, 5 и 6 из проволоки толщиной 1 мм, изготовленной из нержавеющего металла: первая 4 – с ячейками 2 мм, вторая 5 – с ячейками 4 мм, третья 6 – с ячейками 10 мм. Между сетками 4 и 5, 5 и 6 выдержали зазор h1 = h2 = 50 ± 10 мм. Концы сеток 4, 5 и 6 скобами закрепили по бровке и уложили сверху по краям гидроизоляционным материалом 8 из пленочного материала. В одном месте на краю выполнили канал 9 через гидроизоляционный материал 8 и сетки 4, 5 и 6 диаметром 20 мм. Края канала 9 залили термопластичным пластиком для фиксации при охлаждении от смещения. Канал 9 сверху перекрыли клапаном 10. В ходе эксплуатации жидкость и нефть 7 затекает в амбар 1 сверху и проходила последовательно через сетки 6, 5 и 4 очищаясь сначала от крупных механических включений, оседая на дне амбара 1. По мере заполнения жидкостью и нефтью 7 из амбара 1 все откачивали, для этого подгоняли емкость с насосным оборудованием (не показаны), трубы 11 от которого через канал 9 после открытия клапана 10 спускали до дна амбара 1 и откачивали жидкость и нефть 7. После чего трубы 11 извлекали и клапаном 10 закрывали канал 9. За год эксплуатации гидроизоляционный экран 3 не был ни разу поврежден, насосное оборудование не выходило из строя, сетки 4, 5 и 6 из-за суммарной большой площади фильтрования не требовали замены (пропускная способность не изменилась).

Для снятия сеток 4, 5 и 6 из амбара трубами 11 откачали жидкость и нефть 7, подождали окончательного стекания жидкости и нефти в амбар 1 с сеток 4, 5 и 6. После чего с трех сторон отсоединили сетки 4, 5 и 6 от краев амбара 1 и стянули к закрепленному краю. Сетки 4, 5 и 6 скрутили вместе и, предварительно отсоединив от оставшегося края амбара 1, завернули в гидроизоляционный материал - пленку (не показан). В таком виде доставили в цех обработки (не показан), где сетки 4, 5 и 6 извлекли из пленки, обработали паром и углеводородными растворителями для очистки от жидкости и нефти 7, продувкой и промывкой каждой сетки 4, 5 или 6 очистили от механических засоров, выделенных из примесей. Сетки 4, 5 и 6 готовы для установки (аналогично описанному выше) для дальнейшей работы.

Предлагаемый способ строительства накопительного амбара позволяет последовательно отделять механические примеси от жидких отходов и/или нефти, исключая возможность взаимодействия этих примесей с гидроизоляционным экраном.

Способ строительства накопительного амбара, включающий выемку грунта, сооружение обвалования и укладку на дно и стенки амбара гидроизоляционного экрана, отличающийся тем, что внутрь последовательно помещают сетки от более мелкой к крупной с провисом так, чтобы между сетками образовался зазор, а количество сеток и размер ячеек выбирают эмпирическим путем из возможности прохода жидкости и нефти на дно амбара с последовательным разделением по крупности механических примесей, по краям сетки фиксируют и сверху изолируют гидроизоляционным материалом, причем в одном месте оставляют канал, перекрываемый сверху гидроизоляционным материалом для ввода под сетки ко дну трубы для отсасывания жидкости и нефти из амбара.



 

Похожие патенты:

Изобретение относится к области техники предотвращения просачивания на свалке, а именно к способу вычисления времени прорыва предотвращающих просачивание подкладок.

Группа изобретений относится к нефтедобывающей промышленности и может быть использована на нефтехранилищах светлых нефтепродуктов при устранении загрязнения подземных вод.

Изобретение относится к системе безопасности подземных атомных электростанций, и более конкретно, к системе безопасности подземной атомной электростанции от подземной миграции радиоактивных жидких отходов.
Изобретение относится к способу изготовления изоляционной дренажной плиты с использованием вспениваемых и/или предварительно вспененных полистирольных частиц и органического связующего материала.
Изобретение относится к области охраны окружающей среды, а именно к созданию водонепроницаемого слоя для консервации промышленных отвалов, препятствующего загрязнению природной среды токсичными компонентами в результате инфильтрационных и эрозийных процессов.
Изобретение относится к гидротехническому строительству, в частности к способам борьбы с фильтрацией загрязненных стоков из земляных амбаров-накопителей отходов бурения нефтяных и газовых скважин.

Мембраны // 2581869
Изобретение относится к полиолефиновой мембране, пригодной для использования в гидроизоляционных приложениях. Мембрана включает слой (A) и слой (B), где слой (A) содержит композицию (i), содержащую следующие полимерные компоненты, причем все процентные величины относятся к массе: a) от 10 до 40% пропиленового гомополимера и/или сополимера, содержащего более 85% пропилена и имеющего не растворимую в ксилоле фракцию, составляющую при комнатной температуре более чем 80%; и b) от 60 до 90% одного или нескольких сополимеров α-олефина и этилена, содержащих менее чем 40% этилена и имеющих растворимую в ксилоле фракцию, составляющую при комнатной температуре более чем 70%; причем количества (a) и (b) приведены по отношению к суммарной массе (a) и (b); и слой (B) содержит этиленовый гомополимер и/или сополимер, имеющий плотность от 0,915 до 0,980 г/см3; причем указанный слой (B) по меньшей мере частично связан со слоем (A).

Изобретение относится к области строительства и может быть использовано для гидроизоляции и восстановления нарушенной влагозащиты. .

Изобретение относится к горному делу и может быть использовано в обогатительном производстве при гидроизоляции шламохранилищ (ШХ), для охраны грунтовых вод от загрязнения, а также может быть использовано в горном строительстве для охраны вод от истощения, охраны земель от проседания дневной поверхности, от образования овражной эрозии.

Группа изобретений относится к переработке жидких щелочных нефтесодержащих отходов. Способ очистки технологической воды включает отстаивание, удаление неводных фракций и последующий отбор водной фазы с ее дистилляцией.

Группа изобретений относится к области очистки воды от взвешенных примесей и может быть использована на станциях водоподготовки и промышленных производствах. Способ очистки воды от взвешенных примесей включает подачу очищаемой воды в корпус 1 с элементами тонкослойного осаждения 5, перемещение очищаемой воды в блок тонкослойного осаждения 4 и сброс осевших примесей.

Изобретение предназначено для очистки сточных вод. Станция очистки сточных вод содержит вертикальный цилиндрический двухкорпусный активационный резервуар, в центральной части которого расположены две взаимно параллельные разделительные стенки (19), ограничивающие находящуюся между ними центральную часть для аэробной стабилизации активного ила и одновременно отделяющие по отношению к внутреннему корпусу (18) активационного резервуара два симметрично расположенных функциональных пространства для сточной воды и очистительных культур, в каждом из которых отдельно установлены вторичные отстойники (5).

Изобретение относится к оборудованию для разделения эмульсий и суспензий и может быть использовано в химической, нефтехимической и других отраслях промышленности.

Изобретение касается тонкослойных пластинчатых модульных устройств с большой рабочей поверхностью и может быть использовано в очистных сооружениях для разделения городских, промышленных и хозяйственных стоков путем гравитационного осаждения.

Группа изобретений относится к очистке воды и может быть использована на станциях водоподготовки. Способ обработки воды включает непрерывное измерение исходной концентрации загрязнений в воде до ее поступления в обработку и получение на основании указанного измерения количества коагулянта, которое необходимо подать в зону коагуляции, а также количества балласта и флокулянта, которое необходимо подать в зону флокуляции.

Изобретения относятся к биологической очистке сточных вод от органических веществ, соединений азота и фосфора и могут быть использованы в системах аэротенк - вторичный отстойник.

Изобретение предназначено для очистки технологических жидкостей, например воды, загрязненной плавучей жидкой средой, например нефтепродуктами и осаждающимися дисперсными механическими примесями, например твердыми частицами, плотность материала которых выше плотности жидкости, и может быть использовано в любой отрасли промышленности, где возникает такая необходимость.

Изобретение относится к очистке отработанной воды. Установка (10) для очистки отработанной воды содержит разделительное оборудование (100), предназначенное для отделения твердых частиц от жидкотекучей части.
Изобретение относится к области очистки технологической жидкости, например воды, загрязненной осаждающимися механическими примесями, например дисперсными твердыми частицами, плотность материала которых выше плотности технологической жидкости, и плавающей жидкой средой, плотность которой ниже плотности технологической жидкости, например нефти в воде, и может быть использовано в любой отрасли промышленности, где возникает такая необходимость.
Наверх