Способ определения опасности нарушения токосъёма

Нарушения токосъема сопровождаются искрением или электрической дугой, которые оказывают на контактный провод различное разрушающее воздействие, степень которого может быть определена по оптическому излучению от нарушения токосъема. При осуществлении способа в качестве диагностического признака используется энергия излучения, измеряемая вместе с длительностью нарушения токосъема, а также скоростью движения транспортного средства. На основании полученных измерений производится вычисление коэффициента опасности и степени опасности влияния нарушения токосъема на контактный провод. Изобретение позволяет осуществлять непрерывный контроль качества взаимодействия контактной подвески и токоприемников и, что особенно важно для эксплуатации контактной сети, выявлять степень опасности нарушения токосъема. Технический результат изобретения состоит в расширении возможностей диагностирования нарушений токосъема, повышении его эффективности, достоверности и надежности. 3 з.п. ф-лы.

 

Изобретение относится к электрифицированному железнодорожному транспорту и может быть использовано для определения опасности процессов, происходящих при нарушениях взаимодействия контактной подвески и токоприемников электроподвижного состава, путем регистрации и анализа оптического излучения (ультрафиолетовых, видимых и инфракрасных электромагнитных волн), возникающего при дугообразовании и перегрузочном искрении, которые сопровождают отрывы токоприемников от контактного провода контактной подвески.

Контактная подвеска во взаимодействии с токоприемниками электроподвижного состава должна обеспечивать бесперебойный токосъем при движении поездов с установленной скоростью и в заданных климатических условиях. При нарушениях токосъема возникают дугообразование или перегрузочное искрение между полозом токоприемника электроподвижного состава и контактным проводом контактной подвески. Нарушение токосъема возникает по следующим причинам: неисправность контактной подвески (нарушение регулировки, жесткие точки, дефекты монтажа и эксплуатации и др.), появление на контактной сети гололеда, неисправности токоприемников электроподвижного состава (нерасчетное нажатие, износ, трещины, сколы токосъемных пластин и др.). Эти нарушения токосъема, сопровождающиеся искрением или дугообразованием, вызывают разрушение контактирующих элементов, что приводит, в конечном счете, к аварийному режиму на электрифицированном транспорте связанным с пережогом и обрывом контактного провода.

Далее под дуговым нарушением токосъема подразумевается процесс, при котором происходят отрывы токоприемника от контактного провода, как правило, с полной потерей механического контакта, сопровождающиеся возникновением открытой электрической дуги, вызывающей бесконтактную высокотемпературную электродуговую эрозию контактного провода.

Под перегрузочным искрением подразумевается процесс, порождаемый перегрузкой током скользящего контакта, что вызывает электровзрывную эрозию в месте контакта. Резкое увеличение переходного сопротивления контакта сопровождается интенсивным выделением тепла на микровыступах контактирующих элементов, вызывающим плавление и разбрызгивание частиц в окружающее пространство.

Оба эти процесса оказывают разрушающее воздействие на контактный провод, однако степень этого воздействия различна и наибольшую опасность представляют дуговые нарушения токосъема из-за гораздо более высоких температур и энергий воздействия.

С точки зрения технической диагностики контактной сети и реальной ее эксплуатации необходимо регистрировать нарушения токосъема, их вид и степень воздействия на контактный провод.

Известен способ, в котором в качестве критерия качества токосъема используются так называемые коэффициент искрения и удельное число искрений [1]. Для реализации способа используется видеокамера, записывающая на протяжении всего обследуемого участка контактной подвески процесс токосъема и, соответственно, его нарушения с последующим покадровым анализом полученных данных. При дальнейшем анализе рассчитывается длительность отдельного искрения tискр q, с:

где nки - число кадров, подряд расположенных с наличием искрения;

fк - частота кадров, Гц;

q - порядковый номер зарегистрированного искрения. Затем проводят вычисление коэффициента искрения по всему обследуемому участку Kискр, с-1:

где tобщ - длительность периода движения, принятого для расчета, с;

р - число искрений.

После проводят вычисление удельного числа искрений км-1:

где Nискр - число искрений на длине пройденного пути, принятого для расчета удельного числа искрений;

Lобщ - длина пройденного пути, принятого для расчета удельного числа искрений, км.

Этот способ выбран в качестве прототипа.

Технической задачей настоящего изобретения является устранение следующих недостатков прототипа:

- коэффициент искрения и удельное число искрений по всему диагностируемому участку представляются интегральными параметрами и являются характеристиками всего участка целиком, то есть не дают никакой информации о конкретных дефектах, местах их расположения и соответственно о степени опасности воздействия конкретного нарушения токосъема на контактный провод;

- регистрация только длительности отдельно взятого нарушения в общем случае не свидетельствует о степени влияния на контактирующие элементы;

- неспособность учитывать вид нарушения токосъема (дугообразование или перегрузочное искрение);

- невозможность оценить степень опасности того или иного дефекта с точки зрения термического воздействия на контактный провод;

- низкая с точки зрения технического диагностирования достоверность и надежность определения искрений, связанная с возможным пропуском цифровой камерой кратковременных нарушений токосъема.

Спектральный состав света и энергия светового потока, выделяемого при дуговых нарушениях токосъема и перегрузочных искрениях неодинаковы из-за различных температур, сопровождающих эти процессы, что показано в исследовании, проведенном авторами заявляемого изобретения [2].

Опасность влияния на контактный провод зависит от температуры воздействия, причем, чем выше температура, тем опаснее произошедшее нарушение токосъема. Энергия светового потока рассматривается как важный диагностический признак, на основании которого можно судить об опасности влияния нарушения токосъема на контактный провод, поскольку, чем больше энергия светового потока, тем выше температура процесса, произошедшего при нарушении токосъема.

Решение технической задачи достигается тем, что при осуществлении способа происходит регистрация оптического излучения от дуговых, искровых или иных разрядных или тепловых процессов, в том числе перегрузочных искрений, возникающих при нарушениях токосъема, с измерением энергии светового потока Ei в одном или более диапазонах электромагнитных волн. Помимо этого производят измерение длительности нарушения tн и скорости движения транспортного средства ν во время нарушения, и вычисляют показатель опасности s* по формуле

где tн - длительность нарушения токосъема;

Ei - энергия светового потока, принятого в i-м диапазоне длин волн за время tн;

ν - скорость движения транспортного средства;

i - порядковый номер диапазона электромагнитных волн;

m - общее количество принятых диапазонов электромагнитных волн.

Полученный показатель s* сравнивают с несколькими определенными заранее порогами sj, где j - уровень опасности нарушения, принимающий значения 0, 1, …n, причем если sj≤s*<sj+1, то принимается решение об уровне опасности j.

Таким образом, при диагностировании учитывается каждое отдельное произошедшее нарушение токосъема, местоположение которого также фиксируется с присвоением конкретному нарушению определенного уровня опасности j.

Влияние на степень опасности дополнительных параметров или свойств произошедшего нарушения токосъема может быть учтено введением коэффициентов kq, при этом они могут быть как повышающими, так и понижающими:

где kq- корректирующий коэффициент с порядковым номером q,

р - количество корректирующих коэффициентов, которое может быть любым целым положительным числом.

Эти коэффициенты могут учитывать, например, тип нарушения (дугообразование или перегрузочное искрение), а также повторяемость нарушения в том случае, если диагностирование проводится с некоторой периодичностью и определенное нарушение токосъема уже происходило в данной координате пути. Это может свидетельствовать об устойчивом дефекте контактного провода, а значит, степень его опасности может быть повышена коэффициентом для ускорения устранения дефекта.

Прием энергии светового потока может происходить в любом из диапазонов оптического излучения или сразу в нескольких. Способ по пункту 4 формулы изобретения конкретизирует наиболее рациональные и информативные с точки зрения технической диагностики сочетания диапазонов излучения для повышения результативности и достоверности определения опасности нарушений токосъема. Информативным можно считать сочетание ультрафиолетового и инфракрасного диапазонов излучения, а наиболее информативным сочетание УФ, ИК и видимого диапазонов.

Регистрация энергии светового потока от нарушений токосъема и вычислительные алгоритмы для показателя опасности s* и уровня опасности j составляют новизну и существенные отличия заявляемого изобретения, поскольку позволяют определять реальную степень опасности влияния конкретного нарушения токосъема на контактный провод, а значит, повысить точность и качество диагностирования.

Предлагаемый способ выполняется с помощью известных технических средств.

Литература

1. ГОСТ 32793-2014. Токосъем токоприемником железнодорожного электроподвижного состава. Номенклатура показателей качества и методы их определения [Текст]. - Введ. 2015-09-01. - М.: Стандартинформ, 2015. - 20 с.

2. Кондратов, И.А. Развитие оптического метода обнаружения сосредоточенных дефектов контактной сети по дуговым и искровым нарушениям токосъема вагоном-лабораторией / И.А. Кондратов, Ю.Г. Семенов // Транспорт: наука, образование, производство. Том 2. Технические науки: сб. науч. тр. / Рост. гос. ун-т путей сообщения. - Ростов н/Д, 2016. - С. 277-280.

1. Способ определения опасности нарушения токосъема, при котором происходит регистрация оптического излучения от дуговых, искровых или иных разрядных или тепловых процессов, в том числе перегрузочных искрений, возникающих при нарушениях токосъема, отличающийся тем, что при осуществлении способа производят измерение энергии светового потока Ei в одном или более диапазонах электромагнитных волн, а также измерение длительности нарушения tн и скорости движения транспортного средства ν во время нарушения, и вычисляют показатель опасности s* по формуле

где tн - длительность нарушения токосъема;

Ei - энергия светового потока, принятого в i-м диапазоне длин волн за время tн;

ν - скорость движения транспортного средства;

i - порядковый номер диапазона электромагнитных волн;

m - общее количество принятых диапазонов электромагнитных волн, после чего сравнивают полученный показатель s* с несколькими определенными заранее порогами sj, где j - уровень опасности нарушения, принимающий значения 0, 1, …, n, причем если sj ≤ s*<sj+1, то принимается решение об уровне опасности j.

2. Способ по п. 1, при котором фиксируется местоположение произошедшего нарушения токосъема.

3. Способ по любому из пп. 1, 2, при котором в вычисления дополнительно вводят коэффициенты kq в формулу

где kq - корректирующий коэффициент с порядковым номером q;

p - количество корректирующих коэффициентов, причем эти коэффициенты учитывают дополнительные параметры или свойства произошедшего нарушения токосъема.

4. Способ по любому из пп. 1-3, при котором энергия светового потока принимается в двух диапазонах оптического излучения, а именно: в ультрафиолетовом и инфракрасном, либо в трех диапазонах оптического излучения, а именно: в ультрафиолетовом, видимом и инфракрасном.



 

Похожие патенты:

Изобретение относится к средствам мониторинга и контроля состояния контактной сети рельсового транспорта. Система содержит датчики физических параметров подвески, распределенные по крайней мере на одном анкерном участке контактной сети, блок сбора информации, формируемой датчиками, блок обеспечения обработки информации, собранной блоком сбора информации и блок оповещения персонала об аварийной ситуации на участке контактной сети, расположенном на анкерном участке, где блок сбора информации и блок обеспечения обработки информации выполнены подключёнными по цепям питания по крайней мере к одному блоку бесперебойного питания, блок обеспечения обработки информации выполнен бесперебойно подключенным к блоку сбора информации и выполнен обеспечивающим обработку информации таким образом, что по результатам обработки информации, формируемой датчиками, непрерывно формируются решения о гарантированном отсутствии или о возможном наличии аварийной ситуации на анкерном участке, и при формировании решения о возможном наличии аварийной ситуации формируется оповещение о возможности возникновения аварийной ситуации, пересылаемое по сети бесперебойной передачи данных на мобильные устройства оперативного персонала, ответственного за участок контактной сети, на котором расположен анкерный участок.

Группа изобретений относится к электрическим тяговым системам транспортных средств. Система тягового электропитания для высокоскоростного поезда содержит бортовое устройство электропитания, которое содержит бортовую цепь электропитания привода и вспомогательного электропитания, а также бортовую цепь аккумулирования энергии и разряда.

Изобретение относится к области электрифицированного железнодорожного транспорта. Устройство для нанесения защитного покрытия на контактный провод содержит подъемник с емкостью для жидкости, трубку подвода жидкости и установленный в емкость вал с лопастями, расположенный под углом к оси железнодорожного пути.

Изобретение относится к линиям энергоснабжения, контактирующим с токоприемниками транспортных средств. Способ оптической регистрации нарушений токосъема заключается в следующем.

Группа изобретений относится к диагностике состояния проводной контактной сети. Способ измерения параметров контактного провода заключается в следующем.

Группа изобретений относится к линиям электроснабжения. Локомотивная регенеративная система электропитания с обратной связью и функцией антиобледенения состоит из двух регенеративных блоков питания с обратной связью.

Изобретение относится к контактным проводным линиям. Система мониторинга натяжений и перемещений проводов контактной подвески высокоскоростной магистрали, смонтированная на анкерной опоре, состоит из врезанных в несущий трос и контактный провод тензодатчиков с последовательно установленными передающими радиомодулями.

Изобретение относится к энергосистеме электрифицированной железной дороги без обратной последовательности во всем процессе и без сетей электропитания на интервалах.
Изобретение относится к контактным проводным линиям. Устройство контактной подвески высокоскоростной магистрали содержит закрепленные на промежуточных опорах и соединенные между собой струнами контактный провод и несущий трос, а также провод обвода.

Изобретение относится к линиям энергоснабжения, контактирующим с токоприемниками транспортных средств. Способ подвешивания питающих линий транспортных средств между опорами линии на железнодорожном пути заключается в том, что применяют самоцентрирующуюся систему.

Изобретение относится к электрическому транспорту, а именно к устройствам для исследования взаимодействия токоприемника с токопроводом в лабораторных условиях. Техническим результатом является расширение функциональных возможностей устройства.

Изобретение относится к линиям энергоснабжения, контактирующим с токоприемниками транспортных средств. Способ оптической регистрации нарушений токосъема заключается в следующем.

Изобретение относится к регулированию температуры тягового преобразователя. Автоматическая система регулирования температуры тяговой полупроводниковой преобразовательной установки тягового транспортного средства включает в себя систему охлаждения тяговой преобразовательной установки, установленной в воздуховоде, содержащей силовые полупроводниковые приборы с охладителями, вентилятор, датчики температуры силовых полупроводниковых приборов, датчик тока нагрузки тяговой преобразовательной установки, датчик температуры наружного охлаждающего воздуха, датчик подачи вентилятора, микропроцессорный контроллер и драйвер тяговой преобразовательной установки.

Изобретение относится к системам электроснабжения. Способ определения энергетических показателей движения поезда и системы тягового электроснабжения заключается в следующем.

Изобретение относится к рельсовым транспортным средствам. Система для обеспечения рельсового транспортного средства электрической энергией имеет два двигателя внутреннего сгорания, соединенную с двигателем электрическую машину для выработки электроэнергии и систему управления двигателем и машиной.

Изобретение относится к двигателям. Устройство управления мотором приводной системы, содержащей мотор, трансмиссию, датчик температуры масла и механизм охлаждения, содержит контроллер, который управляет крутящим моментом мотора.

Группа изобретений относится к серверу и системе зарядки-разрядки, а также к способу управления сервером. Система содержит сервер и множество зарегистрированных транспортных средств, каждое из которых оснащено заряжаемым-разряжаемым аккумулятором и соединено с сервером с возможностью информационного обмена.

Изобретение относится к электрическому транспортному средству, содержащему электрический двигатель и бортовые средства накопления энергии, электрически соединенные с двигателем, для питания указанного двигателя электрической энергией.

Изобретение относится к регулированию температуры энергетической установки транспортного средства. Автоматическая микропроцессорная система регулирования температуры энергетической установки транспортного средства включает в себя охлаждающее устройство, насос охлаждающей жидкости, вентилятор, плавно управляемый электропривод вентилятора, микропроцессорный контроллер, датчик температуры энергетической, датчик мощности энергетической установки, датчик температуры наружного охлаждающего воздуха, датчик частоты вращения вала энергетической установки, датчик частоты вращения вала вентилятора, сравнивающие устройства, устройство коррекции коэффициента передачи регулятора температуры.

Изобретение относится к системам электроснабжения железнодорожного транспорта. Способ определения энергетических показателей движения поезда и системы тягового электроснабжения заключается в том, что на каждом шаге моделирования на основе тяговых расчетов с учетом напряжения на токоприемнике по графику движения поездов вычисляют параметры электроподвижного состава и системы тягового электроснабжения.
Наверх