Способ определения скорости заполнения пор пористого материала конденсатом паров металла

Изобретение относится к процессам металлирования паро-жидкофазным методом и предназначено для выбора наиболее оптимальных технологических параметров при разработке новых процессов металлирования и их совершенствовании. Способ определения скорости заполнения пор пористого материала конденсатора конденсатом паров металла в процессе металлирования паро-жидкофазным методом включает обеспечение разницы температур между температурой конденсатора из пористого материала и источника паров металла с более высокой температурой, чем температура упомянутого конденсатора, на одной из стадий процесса металлирования, включающего нагрев, изотермическую выдержку и охлаждение. Под конденсатором устанавливают сборник жидкого конденсата паров металла и создают условия для исключения испарения из него конденсата паров металла. После проведения процесса металлирования определяют привес конденсатора, массу покрытия на конденсаторе, исходя из толщины покрытия, и массу жидкого конденсата паров металла в сборнике. После чего, исходя из объема пор материала конденсатора, времени заполнения пор материала конденсатором и изменения веса конденсатора, вычисляют скорость заполнения пор материала конденсатора конденсатом паров металла по формуле:

где v - скорость заполнения пор пористого материала конденсатора, г/(см3×ч); vп и vж - скорость образования твердого, в виде покрытия, и жидкого конденсата паров металла на поверхности не содержащего открытых пор материала конденсатора соответственно, в г/(см2×ч); τобщ - длительность одной из стадий металлирования, на которой создается разница температур между температурами источника паров металла и конденсатора, ч; mк - привес конденсатора, г; mп - масса твердого конденсата паров металла в виде покрытия на поверхности не имеющего открытых пор материала конденсатора, г; mж - масса жидкого конденсата паров металла в сборнике конденсата, г; V - объем пор материала конденсатора, см3; S - площадь поверхности конденсатора из пористого материала, см2. Скорости образования покрытия на конденсаторе и жидкого конденсата паров металла, vп и vж соответственно, определяют при тех же технологических параметрах процесса с учетом толщины покрытия металлирования, что и технологические параметры процесса металлирования конденсатора из пористого материала. В частных случаях осуществления изобретения осуществляют определение скорости заполнения пор пористого материала конденсатом паров кремния. Обеспечивается расширение технологических возможностей способа. 1 з.п. ф-лы.

 

Изобретение относится к процессам металлирования паро-жидкофазным методом и предназначено для выбора наиболее оптимальных технологических параметров при разработке новых процессов металлирования и их совершенствовании.

Известен способ определения количества сконденсировавшихся в порах материала паров металла, в частности, кремния, в зависимости от технологических параметров, заключающийся в вычислении содержания кремния в углерод-карбидокремниевом материале (УККМ) после проведения одной из стадий процесса силицирования пористого углерод-углеродного композиционного материала (УУКМ), а именно: на стадии нагрева, изотермической выдержки или охлаждения. Способ усматривается в [В. М. Бушуев и др. Исследование основных свойств материала на каждой стадии процесса силицирования парофазным методом и определение количества кремния // Перспективные материалы. 2010. №9а. С. 96-99]. В соответствии с ним для того, чтобы определить количество кремния, заполнившего поры материала на одной из стадий процесса силицирования, на других его стадиях производят «запирание» паров кремния в тиглях.

Способ не предусматривает определение скорости заполнения пор пористого материала конденсатом паров металла, т.к. не известно, в течение какого времени это происходит. К тому же возникает сомнение: а надежно ли оказываются «запертыми» пары кремния в тиглях.

Наиболее близким к заявляемому по технической сущности и достигаемому эффекту является способ определения скорости образования конденсата паров металла, в частности, кремния, в зависимости от технологических параметров процесса металлирования паро-жидкофазным методом, включающий создание разницы температур между температурой конденсатора и источника паров металла с более высокой температурой у последнего на одной из стадий процесса металлирования, включающего нагрев, изотермическую выдержку и охлаждение, определение привеса конденсатора и вычисление скорости его образования. Способ усматривается из [Б.М. Васютинский, Г.Н. Картмазов. Конденсация хрома на горячей поверхности / Температуроустойчивые защитные покрытия. Л.: Наука, 1968. С. 119-124]. В соответствии с ним определению подлежит скорость образования твердого конденсата паров металла на горячей поверхности плотного материала.

Способ позволяет определить скорость конденсации паров металла, т.к. известно время, в течение которого он образуется; причем однозначно образуется благодаря созданию разницы между температурой конденсатора (металлируемой заготовки) и источника паров металла с большей температурой у последнего. Поэтому способ несет существенно больше информации, чем способ-аналог.

Недостатком способа является то, что он предусматривает лишь возможность определения скорости образования твердого конденсата паров металла на горячей поверхности беспористого материала и не предусматривает возможность определения скорости заполнения конденсатом паров металла пористых материалов при проведении процесса металлирования паро-жидкофазным методом. Это приводит к сужению его технологических возможностей.

Задачей заявляемого изобретения является расширение технологических возможностей способа.

Поставленная задача решается за счет того, что в способе определения скорости заполнения пор пористого материала конденсатом паров металла, в частности, кремния, в зависимости от технологических параметров процесса металлирования паро-жидкофазным методом, включающем создание разницы температур между температурой конденсатора из пористого материала и источника паров металла с более высокой температурой у последнего на одной из стадий процесса металлирования, включающего нагрев, изотермическую выдержку и охлаждение; определение привеса конденсатора и вычисление скорости заполнения пор материала конденсатора конденсатом паров металла, исходя из объема пор материала конденсатора, времени заполнения пор материала конденсатом и изменения веса конденсатора, в соответствии с заявляемым техническим решением под конденсатором устанавливают сборник жидкого конденсата паров металла и создают условия для исключения испарения из него конденсата паров металла, после проведения процесса металлирования определяют толщину (а через нее -массу) покрытия на конденсаторе и массу жидкого конденсата паров металла в сборнике, если таковые имеются, а вычисление скорости заполнения пор материала конденсатора конденсатом паров металла производят по формуле:

,

где ν - скорость заполнения пор пористого материала конденсатора, г/(см3×ч);

νп и νж - скорость образования твердого (в виде покрытия) и жидкого конденсата паров металла на поверхности (не содержащего открытых пор) материала конденсатора соответственно, в г/(см2×ч);

τобщ - длительность одной из стадий металлирования, на которой создается разница температур между температурами источника паров металла и конденсатора, ч.;

mк - привес конденсатора, г;

mп - масса твердого конденсата паров металла в виде покрытия на поверхности плотного материала конденсатора, г;

mж - масса жидкого конденсата паров металла в сборнике конденсата, г;

V - объем пор материала конденсатора, см3;

S - площадь поверхности конденсатора из пористого материала, см2; при этом скорости образования покрытия на конденсаторе и жидкого конденсата паров металла (νп и νж соответственно) определяют при тех же технологических параметрах процесса металлирования, что и технологические параметры процесса металлирования конденсатора из пористого материала.

Один из способов предусматривает определение скорости заполнения пор пористого материала конденсатом паров кремния.

Размещение под конденсатором из пористого материала сборника жидкого конденсата паров металла с созданием условий для исключения его испарения (создание этих условий рассмотрено при описании сущности устройств в заявке на изобретение №2016143876) позволяет определить полное количество образующегося за время протекания какой-либо стадии процесса металлирования (или процесса в целом) конденсата паров металла и тем самым создает предпосылки для определения скорости заполнения конденсатом паров металла пор материала конденсатора.

Определение толщины (а через нее - массы) покрытия на конденсаторе позволяет учесть ее при расчете скорости заполнения пор конденсатом паров металла в том случае, когда после заполнения пор материала по механизму капиллярной конденсации паров металлов (то есть конденсации непосредственно в порах материала) на поверхности конденсатора (уже из плотного материала) осаждается покрытие.

Определение массы жидкого конденсата паров металла (находящегося в сборнике) позволяет учесть ее при расчете скорости заполнения пор конденсатом паров металла в том случае, когда после заполнения пор материала по механизму капиллярной конденсации паров металла и/или капиллярной пропитки конденсатом паров металла избыток жидкого конденсата паров металла стекает в сборник. Вычисление скорости заполнения пор материала конденсатора конденсатом паров металла по формуле, приведенной в п. 1 формулы изобретения и определение скорости образования покрытия на конденсаторе и жидкого конденсата паров металла (νп и νж соответственно) при тех же технологических параметрах процесса, что и технологические параметры процесса металлирования конденсатора из пористого материала, в совокупности с тем, что их определяют, используя конденсатор из плотного, не содержащего открытых пор, химически инертного к металлу термостойкого материала, позволяет определить ее с учетом возможности образования на плотном (после заполнения пор) материале конденсатора покрытия, а также образования избытка жидкого конденсата паров металла, стекающего вниз и заполняющего сборник.

В новой совокупности существенных признаков у объекта изобретения появляется новое свойство: способность определить скорость заполнения пор материала конденсатом паров металла вне зависимости от длительности одной из стадий - или процесса металлирования в целом - не только при образовании на конденсаторе покрытия, но и при образовании избытка жидкого конденсата паров металла, при условии определения скорости образования твердого и/или жидкого конденсата паров металла на горячей поверхности не содержащего открытых пор материала.

Благодаря новому свойству решается поставленная задача, а именно: расширяются технологические возможности способа.

Определение заявляемым способом скорости заполнения пор пористого материала конденсатом паров металла, в частности, кремния, в зависимости от технологических параметров процесса металлирования паро-жидкофазным методом осуществляют следующим образом.

Для обеспечения сбора жидкого конденсата паров металла под конденсатором из пористого материала устанавливают сборник (сборник жидкого конденсата паров металла).

Для исключения испарения из него конденсата паров металла создают соответствующие условия, которые будут понятны из рассмотрения устройств для осуществления способа по заявке на изобретение №2016143876. Для реализации заявляемого способа в указанных устройствах конденсатор из не имеющего открытых пор материала заменяют на конденсатор из пористого материала, в котором и определяется скорость заполнения его пор конденсатом.

Затем создают разницу температур между температурой конденсатора из пористого материала и источника паров металла с более высокой температурой у последнего на одной из стадий процесса металлирования, включающего нагрев, изотермическую выдержку и охлаждение. Образующийся благодаря этой разнице конденсат паров металла в случае его жидкого состояния пропитывает пористый материал конденсатора.

После полного заполнения пор избыток жидкого конденсата паров металла стекает с конденсатора в сборник жидкого конденсата паров металла.

В том случае, когда температура на конденсаторе меньше температуры плавления металла, а поры материала являются ультратонкими, заполнение пор конденсатом паров металла происходит по механизму капиллярной конденсации. После завершения их заполнения на поверхности конденсатора осаждается твердый конденсат паров металла в виде покрытия.

В том случае, когда температура на конденсаторе меньше температуры плавления металла, а поры материала имеют сравнительно крупные размеры, конденсация паров металла по механизму капиллярной конденсации может стать невозможной и конденсат паров металла будет осаждаться на поверхности конденсатора в виде покрытия. После завершения процесса металлирования определяют толщину (а через нее - массу) покрытия на конденсаторе и массу жидкого конденсата паров металла в сборнике, если таковые имеются.

Кроме того, определяют привес конденсатора.

На основе этих данных, а также данных по скорости образования твердого и жидкого конденсата паров металла на плотном материале конденсатора, полученных при тех же технологических параметрах процесса металлирования, как и конденсатора из пористого материала (см. заявку №2016143876), вычисляют скорость заполнения пор пористого материала конденсатора конденсатом паров металла.

Вычисление указанной скорости производят по формуле:

,

где ν - скорость заполнения пор пористого материала конденсатора, г/(см3×ч);

νп и νж - скорость образования твердого (в виде покрытия) и жидкого конденсата паров металла на поверхности (не содержащего открытых пор) материала конденсатора соответственно, в г/(см2×ч);

τобщ - длительность одной из стадий металлирования, на которой создается разница температур между температурами источника паров металла и конденсатора, ч.;

mк - привес конденсатора, г;

mп - масса твердого конденсата паров металла в виде покрытия на поверхности плотного материала конденсатора, г;

mж - масса жидкого конденсата паров металла в сборнике конденсата, г;

V - объем пор материала конденсатора, см3;

S - площадь поверхности конденсатора из пористого материала, см2.

Требующиеся для расчета данные скорости образования твердого и/или жидкого конденсата паров металла на горячей поверхности плотного материала предварительно определяют ниже рассмотренным способом и с применением устройств для его реализации, подробно описанных в Заявке на изобретение №2016143876.

Определение указанным способом скорости образования конденсата паров металла на горячей поверхности плотного не содержащего открытых пор материала осуществляют при тех же технологических параметрах, что и технологические параметры процесса металлирования конденсатора из пористого материала. Для этого создают требуемую разницу температур между температурой конденсатора и источника паров металла с более высокой температурой у последнего на одной из стадий процесса металлирования. Образующийся благодаря указанной разнице конденсат паров металла собирают. Причем собирают как твердый, так и жидкий конденсат паров металла. Для сбора жидкого конденсата под конденсатором устанавливают сборник. Скорость образования конденсата паров металла, в частности, кремния, вычисляют, исходя из увеличения веса конденсатора и/или сборника жидкого конденсата паров металла, времени его образования и площади поверхности конденсатора.

1. Способ определения скорости заполнения пор пористого материала конденсатора конденсатом паров металла в процессе металлирования паро-жидкофазным методом, включающий обеспечение разницы температур между температурой конденсатора из пористого материала и источника паров металла с более высокой температурой, чем температура упомянутого конденсатора, на одной из стадий процесса металлирования, включающего нагрев, изотермическую выдержку и охлаждение, отличающийся тем, что под конденсатором устанавливают сборник жидкого конденсата паров металла и создают условия для исключения испарения из него конденсата паров металла, после проведения процесса металлирования определяют привес конденсатора, массу покрытия на конденсаторе, исходя из толщины покрытия, и массу жидкого конденсата паров металла в сборнике, после чего, исходя из объема пор материала конденсатора, времени заполнения пор материала конденсатором и изменения веса конденсатора, вычисляют скорость заполнения пор материала конденсатора конденсатом паров металла по формуле:

где v - скорость заполнения пор пористого материала конденсатора, г/(см3×ч);

vп и vж - скорость образования твердого, в виде покрытия, и жидкого конденсата паров металла на поверхности не содержащего открытых пор материала конденсатора соответственно, в г/(см2×ч);

τобщ - длительность одной из стадий металлирования, на которой создают разницу температур между температурами источника паров металла и конденсатора, ч;

mк - привес конденсатора, г;

mп - масса твердого конденсата паров металла в виде покрытия на поверхности не имеющего открытых пор материала конденсатора, г;

mж - масса жидкого конденсата паров металла в сборнике конденсата, г;

V - объем пор материала конденсатора, см3;

S - площадь поверхности конденсатора из пористого материала, см2, при этом скорости образования покрытия на конденсаторе и жидкого конденсата паров металла, vп и vж соответственно, определяют при тех же технологических параметрах процесса с учетом толщины покрытия металлирования, что и технологические параметры процесса металлирования конденсатора из пористого материала.

2. Способ по п. 1, отличающийся тем, что определяют скорость заполнения пор пористого материала конденсатом паров кремния.



 

Похожие патенты:

Изобретение относится к процессам конденсации паров металлов, в частности кремния, протекающей на горячей поверхности плотного материала, и предназначено для использования при разработке новых процессов металлирования и их совершенствования.

Изобретение относится к области измерения влагосодержания газов, в частности к гигрометрам, измеряющим влажность по температуре точки росы. .

Изобретение относится к области теплоэнергетики, в частности к устройствам для измерения количества сконденсированного пара. .

Гигрометр // 2356039
Изобретение относится к технике измерения влажности газов. .

Изобретение относится к области измерительной техники. .

Изобретение относится к устройствам измерения влажности, в частности к определению влажности газовых сред по температуре точки росы, и может быть использовано во всех областях народного хозяйства, где имеется потребность в измерениях такого рода.

Изобретение относится к способам измерения влажности, в частности к определению влажности газовых сред по температуре точки росы, и может быть использовано во всех областях народного хозяйства, где имеется потребность в измерениях такого рода.

Изобретение относится к технике измерения влажности газов и может быть использовано для прецизионных измерений точки росы и точки льда газа. .

Изобретение относится к измерению влажности газов. .

Изобретение относится к технике измерения влажности газов. .

Изобретение относится к установкам для определения зависимости физических свойств горных пород от форм и видов связи насыщающей их воды и может быть использовано в нефтяной геологии.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ выделения 3-оксо-8-гидрокси-1,5,7α,4,8β(Н)-гвай-10(14),11(13)-диен-12,6-олида из надземной части василька шероховатого (Centaurea scabiosa L.) или василька ложнопятнистого (Centaurea pseudomaculosa (Dobrocz.)), заключающийся в экстракции измельченной надземной части указанных растений водой, очищенной при температуре 80°С в течение 1,5 ч, при масс.

Изобретение относится к области нефтяной промышленности и является петрофизической основой для подсчета запасов углеводородов. Оно может быть использовано как в отношении нефтяных, так и газовых сланцев, плотных карбонатных и других пород, имеющих низкие значения пористости и проницаемости, а также многокомпонентный состав насыщающих поровое пространство флюидов (нетрадиционные коллекторы).

Изобретение относится к процессам конденсации паров металлов, в частности кремния, протекающей на горячей поверхности плотного материала, и предназначено для использования при разработке новых процессов металлирования и их совершенствования.

Изобретение относится к химии и технологии жидкостной экстракции, а именно к составу экстракции в водных расслаивающихся системах без органического растворителя. Состав представляет собой состав на основе производных антипирина и органической кислоты: вода - минеральная кислота - диантипирилметан (ДАМ) - производное сульфокислоты, причем в качестве производного сульфокислоты содержит лаурилсульфат натрия и его мольное соотношение с ДАМ изменяется от 1:1,5 до 7:13 при суммарном количестве 2,0 ммоль, при оптимальной концентрации ионов водорода в составе в интервале 0,2-0,5 моль/л.
Изобретение относится к экспресс-методам определения наличия и концентрации топлива в маслах в стационарных и полевых условиях. .

Изобретение относится к области газового анализа и может быть использовано для решения задач обнаружения следовых количеств малолетучих (например, взрывчатых, наркотических) веществ на пальцах рук человека, подлежащего контролю, например, в составе контрольно-пропускных пунктов (КПП), порталов или турникетов.

Изобретение относится к методам исследования автомобильных топлив. .

Изобретение относится к измерительной технике. .

Изобретение относится к получению углеграфитового композиционного материала. Способ включает вакуумную дегазацию пористой углеграфитовой заготовки, ее пропитку расплавом матричного сплава алюминия под воздействием избыточного давления за счет термического расширения расплава при нагреве выше температуры ликвидус сплава алюминия.

Изобретение относится к процессам металлирования паро-жидкофазным методом и предназначено для выбора наиболее оптимальных технологических параметров при разработке новых процессов металлирования и их совершенствовании. Способ определения скорости заполнения пор пористого материала конденсатора конденсатом паров металла в процессе металлирования паро-жидкофазным методом включает обеспечение разницы температур между температурой конденсатора из пористого материала и источника паров металла с более высокой температурой, чем температура упомянутого конденсатора, на одной из стадий процесса металлирования, включающего нагрев, изотермическую выдержку и охлаждение. Под конденсатором устанавливают сборник жидкого конденсата паров металла и создают условия для исключения испарения из него конденсата паров металла. После проведения процесса металлирования определяют привес конденсатора, массу покрытия на конденсаторе, исходя из толщины покрытия, и массу жидкого конденсата паров металла в сборнике. После чего, исходя из объема пор материала конденсатора, времени заполнения пор материала конденсатором и изменения веса конденсатора, вычисляют скорость заполнения пор материала конденсатора конденсатом паров металла по формуле: где v - скорость заполнения пор пористого материала конденсатора, г; vп и vж - скорость образования твердого, в виде покрытия, и жидкого конденсата паров металла на поверхности не содержащего открытых пор материала конденсатора соответственно, в г; τобщ - длительность одной из стадий металлирования, на которой создается разница температур между температурами источника паров металла и конденсатора, ч; mк - привес конденсатора, г; mп - масса твердого конденсата паров металла в виде покрытия на поверхности не имеющего открытых пор материала конденсатора, г; mж - масса жидкого конденсата паров металла в сборнике конденсата, г; V - объем пор материала конденсатора, см3; S - площадь поверхности конденсатора из пористого материала, см2. Скорости образования покрытия на конденсаторе и жидкого конденсата паров металла, vп и vж соответственно, определяют при тех же технологических параметрах процесса с учетом толщины покрытия металлирования, что и технологические параметры процесса металлирования конденсатора из пористого материала. В частных случаях осуществления изобретения осуществляют определение скорости заполнения пор пористого материала конденсатом паров кремния. Обеспечивается расширение технологических возможностей способа. 1 з.п. ф-лы.

Наверх