Устройство формирования низкотемпературной магнитоактивной плазмы в больших объемах



Устройство формирования низкотемпературной магнитоактивной плазмы в больших объемах
Устройство формирования низкотемпературной магнитоактивной плазмы в больших объемах
H05H1/24 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2711180:

Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр-Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") (RU)
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") (RU)

Изобретение относится к области физики плазмы, газового разряда, сильноточной электроники и т.д. и может быть использовано для генерации магнитоактивной низкотемпературной плазмы в больших объемах в целях проведения научно-исследовательской деятельности. Технический результат - повышение стабильности параметров формируемой плазмы за счет стабилизации тока газового разряда. В устройстве для формирования низкотемпературной магнитоактивной плазмы в больших объемах, содержащем последовательно соединенные сетчатый анод, сильноточный коммутатор, потенциальный источник и термокатод, причем термокатод и анод помещены в вакуумную камеру и продольное магнитное поле, а также замыкающий разрядный промежуток диод. Потенциальный источник выполнен в виде батареи гальванических элементов, а между потенциальным источником и термокатодом включен дроссель, причем замыкающий диод подключен катодом к участку цепи между дросселем и потенциальным источником. 1 ил.

 

Изобретение относится к области физики плазмы, газового разряда, сильноточной электроники и т.д., и может быть использовано для генерации магнитоактивной низкотемпературной плазмы в больших объемах в целях проведения научно-исследовательской деятельности.

Из предшествующего уровня техники известны устройства [Форрестер А.Т. Интенсивные ионные пучки. М.: Мир, 1991.- 358 с], [Москалев Б.И. Разряд с полым катодом. М.: Энергия, 1969, с. 164-169.], использующие дуговой разряд с полым самокалящимся катодом, состоящие из полого катода диаметром ~10 мм из тантала, помещенного в продольное магнитное поле, и цилиндрического медного анода, расположенного на одной оси с катодом. Такие устройства обеспечивают токи разряда ~100 А и, соответственно, высокую концентрацию газоразрядной плазмы.

Недостатком этих устройств является необходимость поддержания высокого давления рабочего газа в полом катоде (~10 Па), что влечет высокую скорость рекомбинации образованной плазмы и, как следствие, резкий спад ее концентрации вдоль оси разрядного промежутка, что говорит о нестабильности параметров.

Известно устройство для генерации газоразрядной плазмы на лабораторном стенде LAPD [W. Gekelman, Н. Pfister, Z. Lucky, J. Bamber, D. Leneman, J. Maggs. Design, construction, and properties of the large plasma research device. Rev. of Sci. Instrum. 1991, 62 (12), p. 2875.], состоящее из термокатода и сетчатого анода, расположенных в продольном магнитном поле. В этом устройстве в процессе газового разряда на выводах конденсаторной батареи напряжение проседает и потому на различных участках импульса тока разряда его величины заметно различаются. Это приводит к нестабильному горению разряда и, как следствие, к нестабильности параметров образованной плазмы.

Наиболее близким к заявляемому устройству является генератор плазмы в составе лабораторного стенда LVPD [S. K. Mattoo, V. P. Anitha, L. М. Awasthi, G. Ravi. A large volume plasma device. Rev. Sci. Instrum. 2001, 72 (10), p. 3864.].

Известное устройство (прототип) содержит термокатод и сетчатый анод, помещенные в вакуумную камеру, внутри которой посредством внешнего соленоида формируется продольное магнитное поле, замыкающий диод, а также потенциальный источник в виде AC/DC преобразователя, питаемого от электросети, и сильноточный полупроводниковый ключ (коммутатор). При замыкании ключа между катодом и анодом происходит газовый разряд и образованная в результате этого разряда плазма через сетчатый анод практически полностью инжектируется в рабочее пространство лабораторного стенда.

Недостатком устройства является то, что в процессе газового разряда между «нулевой» точкой AC/DC преобразователя и заземлением вакуумной камеры возникает разность потенциалов, приводящая к появлению заметных токов утечки через корпус вакуумной камеры. Также в процессе газового разряда проводимость плазмы меняется, а напряжение потенциального источника постоянно, поэтому на различных участках разрядного импульса величина тока разряда заметно различается. Вышеперечисленные обстоятельства негативно сказываются на стабильности параметров формируемой плазмы.

Технической проблемой при формировании низкотемпературной магнитоактивной плазмы в больших объемах является необходимость получения плазмы с более стабильными параметрами.

Техническим результатом предложенного изобретения является повышение стабильности параметров формируемой плазмы за счет стабилизации тока газового разряда.

Технический результат достигается тем, что в устройстве для формирования низкотемпературной магнитоактивной плазмы в больших объемах, содержащем последовательно соединенные сетчатый анод, сильноточный коммутатор, потенциальный источник и термокатод, причем термокатод и анод помещены в вакуумную камеру, внутри которой, посредством внешнего соленоида, формируется продольное магнитное поле, а также замыкающий разрядный промежуток диод, согласно изобретению потенциальный источник выполнен в виде батареи гальванических элементов, а между потенциальным источником и термокатодом включен дроссель, причем замыкающий диод подключен катодом к участку цепи между дросселем и потенциальным источником.

Использование батареи гальванических элементов обеспечивает гальваническую развязку потенциального источника от паразитных токовых контуров, проходящих через боковые стенки заземленной вакуумной камеры, и тем самым практически полностью исключает неконтролируемую диффузию заряженных частиц поперек магнитного поля на корпус вакуумной камеры, что, в свою очередь, позволяет повысить стабильность параметров формируемой плазмы.

Включение дросселя в участок цепи между потенциальным источником и термокатодом позволяет сглаживать пульсации тока разряда, а также накапливать энергию для работы схемы в режиме импульсного стабилизатора тока, и тем самым позволяет повысить стабильность параметров формируемой устройством плазмы.

Диод замыкает при отключениях коммутатора, работающего в импульсно-периодическом режиме, токовый контур с разрядным промежутком и тем самым обеспечивает функционирование схемы импульсного стабилизатора тока и, следовательно, позволяет повысить стабильность параметров генерируемой устройством плазмы.

На Фиг. 1 представлена принципиальная электрическая схема устройства, где 1 - сильноточный коммутатор, 2 - батарея гальванических элементов, 3 - дроссель, 4 - газоразрядный промежуток с катодом (к) и сетчатым анодом (а), 5 - диод.

Устройство для формирования низкотемпературной магнитоактивной плазмы в больших объемах (Фиг. 1) содержит сетчатый анод 4а, имеющий высокую степень прозрачности для электронов, подключенный к схемной «земле» и сильноточном)' коммутатору 1, выполненному на основе полупроводникового IGВТ-модуля. С другой стороны к коммутатору 1 клеммой с отрицательной полярностью подключена батарея гальванических элементов 2, состоящая из последовательной сборки стартерных аккумуляторных батарей. Клемма потенциального источника 2 с положительной полярностью подключена к дросселю 3, другой вывод которого соединен с термокатодом 4к. Анод диода 5 подключен к сетчатому аноду 4а, катод диода 5 подключен к участку цепи между дросселем 3 и потенциальным источником 2. Термокатод 4к и анод 4а размещены в вакуумной камере вдоль ее оси.

Устройство работает следующим образом. При подаче цифрового сигнала управления сильноточный коммутатор 1, изготовленный на основе IРМ IGBT-модуля («Mitsubishi» PM800HSA120), замыкается. Между предварительно нагретым термокатодом 4к и сетчатым анодом 4а разрядного промежутка 4, размещенного в формируемом посредством внешнего соленоида продольном магнитном поле, появляется разность потенциалов потенциального источника 2, состоящего из восьми последовательно соединенных стартерных аккумуляторных батарей («Optima Red Тор», 12 В, 50 А⋅ч). При появлении разности потенциалов в промежутке 4 происходит газовый разряд, сопровождающийся плавным увеличением разрядного тока. Плавность нарастания разрядного тока обеспечивается сглаживающим дросселем 3.

При достижении предварительно заданной величины разрядного тока сильноточный коммутатор 1 размыкается, потенциальной источник 2 отключается от разрядного промежутка 4, и разрядный ток начинает плавно спадать до также предварительно заданной величины. Плавность спада разрядного тока обеспечивается тем, что при подключении потенциального источника 2 к разрядному промежутку 4 сглаживающий дроссель 3 накапливает энергию магнитного поля, которую отдает в разрядный промежуток 4 при размыкании сильноточного коммутатора 1. Замкнутый токовый путь «дроссель 3 - разрядный промежуток 4» при разомкнутом коммутаторе обеспечивается диодом 5 («Mitsubishi» RM400HA-34S).

Импульсно-периодический режим включений и отключений сильноточного коммутатора 1 позволяет получать в газоразрядном промежутке 4, размещенном в продольном магнитном поле, стабилизированный ток и, соответственно, магнитоактивную плазму со стабилизированными параметрами. Ширина диапазона стабилизации разрядного тока регулируется временными интервалами между включениями и длительностями включений сильноточного коммутатора 1.

Также следует отметить, что выходные параметры потенциального источника 2 в процессе импульсно-периодической работы сильноточного коммутатора 1 практически неизменны. Постоянство этих параметров обеспечивается за счет использования гальванических элементов, имеющих значительно большую электрическую емкость по сравнению с электролитическими конденсаторными батареями.

В примере конкретного исполнения на предприятии ФГУП «РФЯЦ-ВНИИЭФ» при проведении научных исследований посредством заявляемого устройства многократно формировался столб низкотемпературной магнитоактивной гелиевой плазмы длинной 6 м и объемом ≈1 м3. Плазма нарабатывалась ВаО-термокатодом. Прозрачность сетчатого анода для электронов 95%. Концентрация плазмы в столбе составляла ~1012 см-3 при давлении газа в вакуумной камере 5⋅10-4 Top. Индукция внешнего осевого магнитного поля составляла 95 мТл. Величина стабилизированного тока в разрядном промежутке составляла ~200 А.

Устройство формирования низкотемпературной магнитоактивной плазмы в больших объемах, содержащее последовательно соединенные сетчатый анод, сильноточный коммутатор, потенциальный источник и термокатод, причем термокатод и анод помещены в вакуумную камеру, внутри которой, посредством внешнего соленоида, формируется продольное магнитное поле, а также замыкающий разрядный промежуток диод, отличающееся тем, что потенциальный источник выполнен в виде батареи гальванических элементов, а между потенциальным источником и термокатодом включен дроссель, причем замыкающий диод подключен катодом к участку цепи между дросселем и потенциальным источником.



 

Похожие патенты:

Изобретение относится к плазменной технике и может быть использовано, например, в качестве импульсного источника электромагнитного излучения и направленных потоков заряженных частиц.

Изобретение относится к плазменной технологии в металлургическом производстве, а именно к способам и устройствам для переработки дисперсных материалов, и может быть использовано для получения чистых элементов.

Изобретение относится к получению порошка металлов, сплавов и металлических соединений из проволоки. Плазменно-дуговой реактор содержит корпус, первый электрод и размещенный на расстоянии от него второй электрод, причем первый электрод выполнен с каналом, выпускное отверстие которого выходит в пространство между первым и вторым электродами, средство для формирования плазменной дуги в пространстве между первым и вторым электродами, средство для подачи проволоки через упомянутое выпускное отверстие канала в пространство между первым и вторым электродами и камеру пассивирования, выполненную с возможностью подачи в нее паров проволоки и размещенную с образованием кольцевой щели с поверхностью корпуса для ввода газа.

Изобретение относится к соплам для головки плазменно-дуговой горелки с жидкостным охлаждением. Сопло включает корпус с общей осевой длиной L, внутренней поверхностью и внешней поверхностью, с передним и задним концами и с отверстием сопла на переднем конце, причем внешняя поверхность корпуса, исходя от заднего конца, имеет по существу цилиндрический первый участок с осевой длиной L1, на котором на заднем конце корпуса находится простирающая, преимущественным образом, в окружном направлении канавка для кольца круглого сечения или с расположенным в ней кольцом круглого сечения, которая в направлении заднего конца корпуса ограничена выступом, который задает внешний диаметр D11 корпуса, а на переднем конце находится центрирующая поверхность для держателя сопла, которая задает внешний диаметр D12 корпуса, и примыкающий к нему в направлении переднего конца второй участок, который задает осевую упорную поверхность для держателя сопла на границе с первым участком, которая задает внешний диаметр D21 корпуса и по меньшей мере на частичном участке по существу конусообразно сужается к переднему концу корпуса.

Изобретение относится к плазмотрону для наплавки металлического порошка. Плазмотрон содержит защитное электрически нейтральное сопло с патрубком для подачи присадочного порошка, плазменное сопло с патрубком для подачи газа, соединенное с положительным полюсом источника питания постоянного тока, электрод, установленный внутри плазменного сопла и соединенный с отрицательным полюсом источника питания постоянного тока.

Изобретение относится к области генерации низкотемпературной неравновесной аргоновой плазмы при атмосферном давлении, может быть использовано для стерилизации/дезинфекции медицинского инструмента и принадлежностей, обеззараживания микроорганизмов (бактерий, спор, патогенной микрофлоры), в частности, при хранении, сушке, предпосевной обработке продукции сельского хозяйства (семян, овощей, фруктов, кормовых смесей).

Изобретение относится к плазменной горелке, предпочтительно плазменному резаку. Плазменная горелка содержит по меньшей мере один подводящий канал (34, 35) в корпусе (30), через который плазмообразующий газ (PG1 и/или PG2) направляется к отверстию (210) сопла.

Группа изобретений может быть использована в сельском хозяйстве, в медицине и пищевой промышленности. Способ активации воды или водных растворов включает воздействие плазмы на объем обрабатываемой воды или водных растворов.

Группа изобретений относится к медицинской технике, а именно к средствам для обработки кожи. Устройство для обработки кожи с использованием нетепловой плазмы содержит узел электродной головки и рукоятку, включающую в себя приводной механизм, содержащий источник питания, выполненный с возможностью генерирования указанного низковольтного электрического сигнала, при этом узел электродной головки и приводной механизм включают в себя взаимодействующие элементы, выполненные с возможностью разъемного соединения узла электродной головки с приводным механизмом и электрического соединения источника питания с трансформатором.

Изобретение относится к соплу для подачи горящей плазмы. Устройство содержит камеру фурмы, плазменную горелку, сконфигурированную с возможностью генерации перегретого газа и направления перегретого газа в камеру фурмы в аксиальном направлении, а также узел для впуска завесочного газа, сконфигурированный с возможностью направления завесочного газа в камеру фурмы.

Изобретение относится к области физики плазмы, газового разряда, сильноточной электроники и т.д. и может быть использовано для генерации магнитоактивной низкотемпературной плазмы в больших объемах в целях проведения научно-исследовательской деятельности. Технический результат - повышение стабильности параметров формируемой плазмы за счет стабилизации тока газового разряда. В устройстве для формирования низкотемпературной магнитоактивной плазмы в больших объемах, содержащем последовательно соединенные сетчатый анод, сильноточный коммутатор, потенциальный источник и термокатод, причем термокатод и анод помещены в вакуумную камеру и продольное магнитное поле, а также замыкающий разрядный промежуток диод. Потенциальный источник выполнен в виде батареи гальванических элементов, а между потенциальным источником и термокатодом включен дроссель, причем замыкающий диод подключен катодом к участку цепи между дросселем и потенциальным источником. 1 ил.

Наверх