Пьезоэлектрический датчик давления

Заявленный пьезоэлектрический датчик давления используется в приборостроении для преобразования звуковой энергии в электрический сигнал при высоких избыточных давлениях среды, достигающих 100 МПа и более. Заявленный пьезоэлектрический датчик содержит металлический цилиндрический корпус с замыкающей стенкой с одной стороны, пьезокерамический элемент в виде радиально поляризованного цилиндра, размещенный в корпусе и механически связанный с ним с помощью клея, кабель для линии связи электродов пьезокерамического элемента с регистрирующей аппаратурой и ниппель для герметизации внутренней полости датчика, при этом с целью повышения предельных избыточных давлений без существенного снижения чувствительности в корпус датчика введен переходник с плавным увеличением толщины стенки корпуса в 3-5 раз. Технический результат: за счет введения в корпус датчика давления переходника с плавным увеличением толщины стенок корпуса в 3-5 раз повышаются допустимые избыточные давления, до 100 МПа. При этом снижение чувствительности датчика не превышает 20%. 1 ил.

 

Данное изобретение относиться к измерительной технике. Применяется для измерения расхода газа или жидкости в напорных трубопроводах, где каждый преобразователь поочередно излучает и принимает ультразвуковую волну. Разность времени прохождения волны в прямом и обратном направлении относительно потока является информацией о его скорости, а, следовательно, и объемном расходе носителя.

Пьезоэлектрический датчик, содержит металлический цилиндрический корпус с замыкающей стенкой с одной стороны, пьезокерамический элемент в виде радиально поляризованного цилиндра, размещенный в корпусе и механически связанный с ним с помощью клея, кабель линии связи электродов пьезокерамического элемента с регистрирующей аппаратурой и ниппель для герметизации внутренней полости датчика.

Аналогом является датчик 0.14М, описанный в книге Пьезоэлектрическое приборостроение, том 9, Проектирование пьезоэлектрических датчиков на основе пространственных электротермоупорных моделей, автор М.В. Богуш., на стр. 204-213. В таблице 6.8, стр. 212, приведены основные технические характеристики ПДД ведущих мировых производителей, где описываемая аналоговая модель 014М имеет сравнительно низкую прочность при избыточном давлении, как правило, не превышающую 30 МПа. При видении в корпус датчика переходника допустимое избыточное давление увеличевается до 100 МПа.

Недостаток такой конструкции - сравнительно низкая прочность при избыточном давлении, как правило, не превышающая 30 МПа.

Целью изобретения, является повышение прочности датчика при высоких избыточных давлениях без существенного снижения чувствительности к переменному давлению.

Цель достигается тем, что в корпус датчика введен переходник с плавным увеличением толщины стенки корпуса в 3-5 раз. При этом допустимые избыточные давления составляют не менее 100 МПа при снижении чувствительности датчика не более 25%

Благодаря введению в конструкцию датчика переходника его прочность увеличивается в 3 раза при снижении чувствительности в пределах 25%.

Краткое описание чертежа к патенту

Пьезоэлектрический датчик давления.

1 - фторопластовая трубка;

2 - кабель;

3 - ниппель;

4 - корпус;

5 - пьезоэлемент;

А - переходник.

Пьезоэлектрический датчик, содержащий металлический цилиндрический корпус с замыкающей стенкой с одной стороны, пьезокерамический элемент в виде радиально поляризованного цилиндра, размещенный в корпусе и механически связанный с ним с помощью клея, кабель для линии связи электродов пьезокерамического элемента с регистрирующей аппаратурой и ниппель для герметизации внутренней полости датчика, отличающийся тем, что с целью повышения предельных избыточных давлений без существенного снижения чувствительности в корпус датчика введен переходник с плавным увеличением толщины стенок корпуса в 3-5 раз.



 

Похожие патенты:

Датчик, способ его изготовления и электронное устройство. Датчик (100) включает в себя: несущую подложку (101), тонкопленочный транзистор (102) (TFT), расположенный на несущей подложке и включающий в себя электрод (1025) истока, первый изоляционный слой (106), расположенный на TFT (102) и содержащий первое сквозное отверстие (1071), проходящее через первый изоляционный слой (106), проводящий слой (1031), расположенный в первом сквозном отверстии (1071) и на части первого изоляционного слоя (106) и электрически соединенный с электродом (1025) истока через первое сквозное отверстие (1071), смещающий электрод (1032), расположенный на первом изоляционном слое (106) и отдельный от проводящего слоя (1031), активный считывающий слой (1033), соответственно, соединенный с проводящим слоем (1031) и смещающим электродом (1032), и вспомогательный проводящий слой (1034), расположенный на проводящем слое (1031).

Изобретение относится к измерительной технике, а именно к частоторезонансным чувствительным элементам (ЧЭ) дифференциального давления и построенным на их основе преобразователям, датчикам с частотным и цифровым выходом, способным с высокой точностью измерять малые перепады относительно больших давлений жидких и газообразных агрессивных сред.

Изобретение относится к технологии получения пьезоэлектрического кристалла на основе лангатата с высокой стабильностью и высокими изоляционными свойствами для использования в качестве пьезоэлектрического элемента датчика давления для измерения давления при сгорании внутри камеры двигателя внутреннего сгорания.

Изобретение относится к измерительной технике, а именно к частоторезонансным чувствительным элементам (ЧЭ) для датчиков дифференциального давления, способных с высокой точностью измерять малые перепады относительно больших давлений жидких и газообразных агрессивных сред.

Изобретение относится к области измерительной техники, а именно к устройствам с пьезоэлектрическим датчиком, которые преобразуют величину переменных сил давления в электрический сигнал.

Изобретение относится к области измерительной техники для измерения давления жидких и газовых сред. Чувствительный элемент на поверхностных акустических волнах (ПАВ) для измерения давления содержит пьезоплату, на поверхности которой сформированы образующие линию задержки (ЛЗ) ПАВ-структуры, включающие встречно-штыревой преобразователь (ВШП), размещенный на акустическом пути.

Изобретение относится к техническим устройствам для измерения давления в пластичных и сыпучих средах, в т.ч. грунтах.

Изобретение относится к измерительной технике, а именно к пьезорезонансным чувствительным элементам (ПЧЭ) для частотных датчиков абсолютного давления, и в частности для кварцевых датчиков, имеющих малый поперечный размер корпуса и способных работать при высокой температуре до 200°C и высоком давлении до 150 МПа.

Изобретение относится к области измерительной техники и может быть использовано для температурной компенсации в устройстве CMUT. Устройства CMUT используют во многих применениях, например, ультразвукового формирования изображения и измерения давления.

Изобретение относится к измерительной технике, в частности к нанотехнологическим изделиям измерительной техники, предназначено для измерения давления жидких и газообразных сред и может быть использовано в средствах автоматизации контроля процессов сложных технических систем.

Заявленный пьезоэлектрический датчик давления используется в приборостроении для преобразования звуковой энергии в электрический сигнал при высоких избыточных давлениях среды, достигающих 100 МПа и более. Заявленный пьезоэлектрический датчик содержит металлический цилиндрический корпус с замыкающей стенкой с одной стороны, пьезокерамический элемент в виде радиально поляризованного цилиндра, размещенный в корпусе и механически связанный с ним с помощью клея, кабель для линии связи электродов пьезокерамического элемента с регистрирующей аппаратурой и ниппель для герметизации внутренней полости датчика, при этом с целью повышения предельных избыточных давлений без существенного снижения чувствительности в корпус датчика введен переходник с плавным увеличением толщины стенки корпуса в 3-5 раз. Технический результат: за счет введения в корпус датчика давления переходника с плавным увеличением толщины стенок корпуса в 3-5 раз повышаются допустимые избыточные давления, до 100 МПа. При этом снижение чувствительности датчика не превышает 20. 1 ил.

Наверх