Способ дистанционного обнаружения и сопровождения радиомолчащих объектов



Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
Способ дистанционного обнаружения и сопровождения радиомолчащих объектов
G01S13/532 - с использованием набора селекторов по дальности или запоминающей матрицы

Владельцы патента RU 2716006:

Акционерное общество "Всероссийский научно-исследовательский институт "Градиент" (АО "ВНИИ "Градиент") (RU)

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Техническим результатом изобретения является повышение чувствительности при обнаружении и сопровождении радиомолчащих объектов. Повышение чувствительности достигается за счет применения новых операций компенсации маскирующих помех и когерентного формирования на каждой ожидаемой частоте доплеровского сдвига элементов трехмерного пространственно-частотно-временного изображения из сигналов всех антенн решетки и их объединения в результирующее изображение, вместо операций некогерентного суммирования совокупности двумерных частотно-временных изображений, сформированных из сигналов отдельных антенн. 1 ил.

 

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Технология скрытного дистанционного контроля подвижных объектов, использующая естественный радиоподсвет целей, создаваемый на множестве частот радиоизлучениями передатчиков различного назначения, пока еще не получила достаточного распространения, несмотря на то, что может существенно повысить скрытность и эффективность обнаружения, пространственной локализации и сопровождения широкого класса радиомолчащих подвижных объектов.

Известен способ дистанционного обнаружения и сопровождения радиомолчащих объектов [1], заключающийся в том, что выбирают передатчик, излучающий радиосигнал с расширенным спектром, синхронно принимают решеткой из N антенн многолучевые радиосигналы, включающие прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика, синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы, которые объединяют в матричный цифровой сигнал, матричный цифровой сигнал запоминают и преобразуют в сигнал пространственной корреляционной матрицы, который совместно с зависящим от азимутально-угломестного направления приема прямого радиосигнала, длины волны и геометрии решетки сигналом вектора наведения преобразуют в сигнал оптимального весового вектора, который совместно с матричным цифровым сигналом преобразуют в прямой цифровой сигнал, который запоминают, формируют и запоминают зависящие от временного сдвига комплексные взаимно корреляционные функции (ВКФ) между цифровым сигналом отдельной антенны и прямым цифровым сигналом, определяют максимальное значение модуля каждой комплексной ВКФ и фиксируют соответствующие этим максимумам значения комплексной ВКФ, вычисляют разностные цифровые сигналы, формируют зависящие от временного и частотного сдвигов комплексные двумерные взаимно корреляционные функции (ДВКФ) между каждым разностным цифровым сигналом и прямым цифровым сигналом, усредняют модули комплексных ДВКФ, определяют по максимумам усредненной ДВКФ число сжатых сигналов и фиксируют значения задержки по времени и абсолютного доплеровского сдвига каждого р-го сжатого сигнала, идентифицируют соответствующие отдельному максимуму усредненной ДВКФ составляющие комплексных ДВКФ как сжатый по времени и частоте р-й сигнал, выделяют и запоминают значения составляющих комплексных ДВКФ, задержки по времени и абсолютного доплеровского сдвига каждого р-го сжатого сигнала, по выделенным значениям р-ых идентифицированных составляющих комплексных ДВКФ синтезируют комплексный двумерный угловой спектр, по максимумам модуля которого определяют азимутально-угломестное направление прихода р-го сжатого сигнала, по значениям задержки и абсолютного доплеровского сдвига и азимутально-угломестного направления прихода обнаруживают и определяют пространственные координаты подвижных объектов.

Данный способ содержит операции формирования классической двумерной взаимной корреляционной функции, которая, кроме основного лепестка, ширина которого ограничивает разрешающую способность обнаружения, содержит высокие боковые лепестки, маскирующие сигналы далеких и слабо рассеивающих объектов.

Более эффективным является способ дистанционного обнаружения и сопровождения радиомолчащих объектов [2], свободный от этого недостатка и выбранный в качестве прототипа. Согласно этому способу:

выбирают передатчик, излучающий радиосигнал с расширенным спектром;

синхронно принимают решеткой из N антенн многолучевые радиосигналы, включающие прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика;

синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы sn, где n - номер антенны, которые запоминают и объединяют в цифровой матричный сигнал из которого формируют цифровой прямой сигнал s',

преобразуют прямой сигнал s' в многочастотный матричный сигнал комплексной фазирующей функции А, включающий гипотетические сигналы, рассеиваемые потенциальными объектами в ожидаемых областях доплеровских частот и задержек, запоминают матричный сигнал А;

преобразуют сигнал отдельной антенны sn в сигнал комплексного частотно-временного изображения где - матрица, эрмитово сопряженная с А;

сигнал запоминают и используют в качестве начального приближения, а также итерационно формируют зависящий от предыдущего решения вспомогательный матричный сигнал - z-й элемент вектора k=1, 2, … - номер итерации, и сигнал очередного приближения комплексного частотно-временного изображения где λ - множитель Лагранжа, до тех пор, пока номер текущей итерации не превысит заданный порог K;

после чего усредняют модули текущих частотно-временных изображений отдельных антенн

по локальным максимумам усредненного частотно-временного изображения z=1, ……, Z, где Z - число элементов изображения, определяют число рассеянных радиосигналов и фиксируют значения временной задержки и доплеровского сдвига каждого р-го рассеянного радиосигнала;

идентифицируют соответствующие отдельному максимуму усредненного изображения элементы комплексных частотно-временных изображений как составляющие р-го рассеянного радиосигнала;

выделяют и запоминают значения идентифицированных составляющих по которым синтезируют комплексный угловой спектр, по максимумам модуля которого определяют азимутально-угломестное направление прихода р-го рассеянного сигнала, по значениям временной задержки, доплеровского сдвига и азимутально-угломестного направления прихода обнаруживают и определяют пространственные координаты подвижных объектов.

Способ-прототип обеспечивает обнаружение и пространственную локализацию радиомолчащих объектов с повышенной разрешающей способностью и увеличенным динамическим диапазоном.

Однако, у способа-прототипа на этапе обнаружения применяются операции некогерентного суммирования сигналов двумерных частотно-временных изображений, когерентно сформированных из сигналов отдельных антенн решетки. Другими словами, у способа-прототипа на этапе обнаружения не используется пространственная избирательность, характерная для случая когерентного суммирования сигналов всех антенн в антенных решетках, что приводит к следующим недостаткам способа-прототипа:

- потере чувствительности на 3 дБ при обнаружении, измерении пространственных координат и сопровождении объектов в условиях некоррелированности шумов и помех;

- дополнительному снижению чувствительности при наличии расположенных в окружающем пространстве источников коррелированных помех (например, сигналов передатчиков, частоты радиоизлучений которых совпадают с частотой приема рассеянных объектами сигналов).

Кроме того, у способа-прототипа отсутствуют операции компенсации прямого сигнала подсвета и рассеянных стационарными объектами сигналов. Как следствие, прямой сигнал и рассеянные стационарными объектами сигналы маскируют эхо-сигналы малоразмерных низкоскоростных объектов, что дополнительно ограничивает чувствительность и, как следствие, дальность при их обнаружении и сопровождении.

Таким образом, недостатком способа-прототипа является ограниченная чувствительность при обнаружении и сопровождении радиомолчащих объектов.

Техническим результатом изобретения является повышение чувствительности при обнаружении и сопровождении радиомолчащих объектов.

Повышение чувствительности достигается за счет применения новых операций:

- компенсации помех, маскирующих эхо-сигналы объектов;

- когерентного формирования на каждой ожидаемой частоте доплеровского сдвига элементов трехмерного пространственно-частотно-временного изображения из сигналов всех антенн решетки вместо формирования из сигналов отдельных антенн совокупности двумерных частотно-временных изображений и последующего их некогерентного суммирования.

Технический результат достигается тем, что в способе дистанционного обнаружения и сопровождения радиомолчащих объектов, заключающемся в том, что выбирают передатчик, излучающий радиосигнал с расширенным спектром, синхронно принимают решеткой из N антенн многолучевые радиосигналы, включающие прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика, синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы sn, где n - номер антенны, которые запоминают и объединяют в цифровой матричный сигнал из которого формируют цифровой прямой сигнал s', согласно изобретению, преобразуют прямой сигнал s' в одночастотные матричные сигналы комплексной фазирующей функции Аω, каждый из которых включает гипотетические сигналы, рассеиваемые потенциальными подвижными и стационарными объектами в ожидаемых областях задержек и угловых направлений на каждой ожидаемой частоте доплеровского сдвига ω, матричные сигналы Аω запоминают, объединяют запомненные цифровые сигналы антенн sn в векторный сигнал векторный сигнал s запоминают и преобразуют всигнал элемента комплексного пространственно-частотно-временного изображения для нулевого значения ω=0 доплеровского сдвига частоты где -матрица, эрмитово сопряженная с А0, с использованием сигнала в качестве начального приближения итерационно формируют и запоминают зависящий от предыдущего решения вспомогательный матричный сигнал где - z-я компонента вектора элемента изображения k=1, 2, … - номер итерации, а также сигнал очередного приближения элемента комплексного пространственно-частотно-временного зображения где λ - множитель Лагранжа, и очищенный от прямого и рассеянных стационарными объектами сигналов векторный сигнал до тех пор, пока номер текущей итерации не превысит заданный порог K, после этого из очищенного векторного сигнала для каждого ожидаемого ненулевого значения доплеровского сдвига частоты ω формируют сигнал начального приближения а затем итерационно получают и запоминают вспомогательный матричный сигнал и сигнал очередного приближения элемента комплексного пространственно-частотно-временного изображения до тех пор, пока номер текущей итерации не превысит заданный порог K, объединяют сформированные сигналы элементов изображения в матричный сигнал результирующего комплексного пространственно-частотно-временного изображения Н, после чего по локальным максимумам квадрата модуля матричного сигнала результирующего изображения где компонента матричного сигнала Н, определяют число рассеянных радиосигналов, по параметрам которых - значениям доплеровского сдвига частоты со, временной задержки q и азимутально-угломестного направления приема каждого рассеянного радиосигнала выполняют обнаружение, пространственную локализацию и сопровождение объектов. Операции способа поясняются чертежом.

Устройство, в котором реализуется предложенный способ, содержит последовательно соединенные систему приема и предварительной обработки 1, систему моделирования и выбора радиопередатчиков (РПД) 2, вычислительную систему 3 и блок управления и индикации 4.

В свою очередь система приема и предварительной обработки 1 включает антенную решетку 1-1, тракт поиска источников подсвета, включающий преобразователь частоты 1-2, аналого-цифровой преобразователь (АЦП) 1-3 и устройство обнаружения 1-4, а также тракт приема прямых и рассеянных сигналов, включающий преобразователь частоты 1-5, АЦП 1-6 и устройство адаптивной пространственной фильтрации 1-7. Вычислительная система 3 включает блок синтеза частотно-временного изображения 3-1, блок сравнения 3-2, устройство формирования вспомогательного и взвешивающего сигнала 3-3 и блок формирования сигнала фазирующей функции 3-4. При этом система 2 соединена с входом блока 4, а также имеет интерфейс для соединения с внешней базой РПД. Кроме того, блок 4 имеет выход, предназначенный для подключения к внешним системам. Подсистема 1 является аналогово-цифровым устройством и предназначена для поиска и измерения параметров синхронизации передатчиков подсвета объектов, излучающих радиосигналы с расширенным спектром, а также для адаптивной пространственной фильтрации полезных прямых и рассеянных радиосигналов. Отметим, что после того как параметры синхронизации прямого радиосигнала выбранного передатчика подсвета измерены или когда они априорно известны, прямой радиосигнал передатчика может быть сформирован путем моделирования в системе 2.

Антенная решетка 1-1 состоит из N антенн с номерами Пространственная конфигурация антенной решетки должна обеспечивать измерение азимутально-угломестного направления прихода радиосигналов и может быть произвольной пространственной конфигурации: плоской прямоугольной, плоской кольцевой или объемной, в частности, конформной. Для улучшения различения сигналов не только по пространству, но и по поляризации требуется существенное различие поляризационных откликов антенн решетки, то есть антенная решетка должна быть неоднородной (гетерогенной), иметь антенные элементы с отличающимися векторными диаграммами направленности. Преобразователи частоты 1-2 и 1-5 являются N- канальными, выполнены с общим гетеродином и с полосой пропускания каждого канала, изменяемой в соответствии с шириной спектра принимаемого радиосигнала. Общий гетеродин обеспечивает многоканальный когерентный прием сигналов. АЦП 1-3 и 1-6 также являются N-канальными и синхронизированы сигналом одного опорного генератора (для упрощения опорный генератор на схеме не показан). Если разрядность и быстродействие АЦП достаточны для непосредственного аналого-цифрового преобразования входных сигналов, то вместо преобразователей частоты 1-2 и 1-5 могут использоваться частотно избирательные полосовые фильтры и усилители. Кроме этого, преобразователи частоты 1-2 и 1-5 обеспечивают подключение одной из антенн вместо всех антенн решетки для периодической калибровки приемных каналов по внешнему источнику сигнала. Возможна калибровка с использованием внутреннего генератора, выход которого также подключается вместо всех антенн для периодической калибровки каналов. Устройство обнаружения 1-4 и устройство адаптивной пространственной фильтрации 1-7 представляют собой вычислительные устройства. Подсистема 2 является вычислительным устройством и предназначена для идентификации, отбора и периодического обновления рабочего списка передатчиков радиосигналов с расширенным спектром, используемых для подсвета заданной области контролируемого пространства, а также для формирования модельных сигналов выбранных передатчиков. Вычислительная система 3 предназначена для формирования сигнала фазирующей функции (блок 3-4), формирования вспомогательного и взвешивающего сигналов (устройство 3-3), сравнения числа итераций с заданным порогом (блок 3-2) и синтеза пространственно-частотно-временного изображения (блок 3-1).

Устройство работает следующим образом.

В системе 2 на основе данных внешней базы радиопередатчиков, а также данных об обнаруженных радиопередатчиках подсвета, поступающих от устройства 1-4, с использованием программных средств моделирования идентифицируется, выбирается и периодически обновляется рабочий список передатчиков, излучающих радиосигналы с расширенным спектром. При моделировании оцениваются возможные зоны покрытия, вероятности обнаружения и достижимые точности локализации и идентификации подвижных объектов различного класса, которые могут быть обеспечены при различных вариантах размещения передатчиков относительно станции обнаружения-пеленгования. Кроме того, в системе 2 регенерируются принятые прямые радиосигналы или формируются модельные сигналы передатчиков с требуемыми параметрами синхронизации.

Параметры выбранного множества передатчиков (номер, несущая частота, ширина спектра, его форма, параметры синхронизации и мощность излучаемого сигнала, координаты или расстояние и угловое положение относительно точки приема) запоминаются в подсистеме 2, поступают в блок 4, а также используются для настройки преобразователей 1-2 и 1-5. С целью упрощения, цепи управления преобразователем не показаны.

По сигналам системы 2 преобразователь частоты 1-2 начинает перестраиваться с заданным темпом в заданном диапазоне частот поиска радиосигналов, например, в диапазоне 10-1000 МГц. При этом тракт поиска осуществляет поиск и измерение параметров синхронизации передатчиков подсвета, излучающих радиосигналы с расширенным спектром, на дискретной сетке частот поиска. Принятый каждым антенным элементом с номером n антенной решетки 1-1 зависящий от времени t радиосигнал фильтруется по частоте и переносится на более низкую частоту в преобразователе 1-2. Сформированные в преобразователе 1-2 радиосигналы преобразуется с помощью АЦП 1-3 в цифровые сигналы, которые поступают в устройство обнаружения 1-4, в котором на каждой частоте дискретной сетки частот поиска осуществляется обнаружение и измерение параметров синхронизации передатчиков подсвета. Функционирование устройства обнаружения 1-4 основано на широко известных способах радиоконтроля, например, [3].

Одновременно по сигналам системы 2 преобразователь частоты 1-5 перестраивается на заданную частоту приема. Тракт приема синхронно принимает на заданной частоте многолучевые радиосигналы, включающие прямой радиосигнал выбранного передатчика с расширенным спектром и рассеянные объектами радиосигналы этого передатчика.

Принятый каждым антенным элементом с номером п антенной решетки 1-1 зависящий от времени t радиосигнал sn(t) фильтруется по частоте и переносится на более низкую частоту в преобразователе 1-5.

Сформированные в преобразователе 1-5 радиосигналы sn(t) синхронно преобразуются с помощью АЦП 1-6 в цифровые сигналы где - номер временного отсчета сигнала, {}T - означает транспонирование.

Цифровые сигналы отдельных антенн sn поступают в устройство 1-7 и в блок 3-1, где запоминаются.

Кроме того, в устройстве 1-7 выполняются следующие действия:

- цифровые сигналы отдельных антенн sn объединяются в матричный цифровой сигнал размером N×I;

- из матричного цифрового сигнала S формируется N×N сигнал пространственной корреляционной матрицы R;

- сигнал корреляционной матрицы R преобразуется в N×1 сигнал оптимального весового вектора w=R_1v, где V-N×1 вектор наведения, определяемый азимутально-угломестным направлением, длиной волны (частотой) прямого радиосигнала и геометрией решетки;

- преобразуется матричный цифровой сигнал S в прямой цифровой сигнал s'T=wHS.

Физически описанные операции адаптивной пространственной фильтрации обеспечивают направленный прием полезного прямого радиосигнала выбранного передатчика подсвета с заданного направления с одновременным подавлением широкого класса помех, приходящих с других направлений. Отметим, что технически реализуемая глубина подавления помех достигает величины 40 дБ [4]. Это обеспечивает выигрыш в чувствительности при формировании слабых рассеянных сигналов на последующих этапах обработки.

Сформированный в устройстве 1-7 прямой цифровой сигнал s' поступает и запоминается в блоке 3-4.

После этого, в блоке 3-4 цифровой прямой сигнал s' преобразуется в матричные сигналы комплексной фазирующей функции Аω, которые поступают в устройство 3-3, где запоминаются.

Преобразование прямого сигнала s' в матричный сигнал Аω осуществляется по следующей формуле: где

- матрица фазирующей функции по угловому направлению размером N×L. Множители учитывают фазовый сдвиг, вызванный различным пространственным расположением антенн решетки (определяемым их радиус-векторами rn), ожидаемым направлением прихода сигнала а также отличием диаграмм направленности антенн и их ориентацией. Для ненаправленных антенн справедливо следующее: где - волновой вектор, зависящий от частоты приема и направления прихода сигнала;

символ обозначает прямое произведение матриц, - векторы размером I×1, являющиеся задержанными по времени на qTs версиями прямого сигнала s'; q=0, …, Q-1, Q - число временных задержек прямого сигнала; Ts - период выборки сигнала;

- матрицы доплеровских сдвигов размером I×I, ω=0, ±1, …, ±Ω, (2Ω+1) - размер координатной сетки по доплеровскому сдвигу. Значения доплеровского сдвига частоты пробегают дискретный ряд значений ω/(ITs).

Таким образом, столбцы матрицы Аω представляют собой задержанные по времени, сдвинутые по частоте доплеровского сдвига и фазированные по направлению версии прямого сигнала s', а размер этой матрицы IN×QL определяется числом отсчетов I в разведываемом сигнале (длительностью интервала наблюдения), числом антенн N, размерами координатной сетки по временному запаздыванию Q и направлению прихода L.

Кроме того, в устройстве 3-3 из сигнала Аω последовательно вычисляются сигналы и для нулевого значения ω=0 доплеровского сдвига частоты, а также сигналы для всех ненулевых значений ω=±1, …, ±Ω доплеровского сдвига частоты, которые поступают в блок 3-1, где также запоминаются.

В блоке 3-1 запомненные цифровые сигналы антенн sn объединяются в векторный сигнал Векторный сигнал s запоминается, а также с использованием сигналов поступивших от блока 3-3, преобразуется в сигнал элемента комплексного пространственно-частотно-временного изображения для нулевого значения ω=0 доплеровского сдвига частоты (вектор с размером QL×1).

Полученный в блоке 3-1 сигнал элемента изображения запоминается в блоке 3-2 в качестве начального приближения и транслируется в устройство 3-3 для запоминания и инициализации очередной итерации с номером k=1.

В устройстве 3-3 с использованием сигнала элемента изображения, полученного на предыдущей итерации, то есть при k=1, формируется зависящий от предыдущего решения вспомогательный матричный сигнал где - z-я компонента вектора элемента изображения и взвешивающий сигнал Значение множителя Лагранжа λ выбирают исходя из уровня шумов в каналах приема. Взвешивающий сигнал поступает в блок 3-1.

В блоке 3-1 с использованием сигнала и запомненного векторного сигнала s синтезируется сигнал очередного приближения элемента комплексного пространственно-частотно-временного изображения для нулевого значения ω=0 доплеровского сдвига частоты и очищенный от прямого и рассеянных стационарными объектами сигналов векторный сигнал

Сигнал запоминается в блоке 3-1. Сигнал поступает в блок 3-2, где также запоминается для использования на следующей итерации. Кроме того сигнал поступает в устройство 3-3 для запоминания и инициализации очередной итерации синтеза элемента пространственно-частотно-временного изображения для нулевого значения со = 0 доплеровского сдвига частоты и очищенного сигнала.

После чего, в устройстве 3-3, блоках 3-1 и 3-2 выполняется описанная ранее последовательность операций по формированию сигналов запоминанию сигналов а также сравнению номера текущей итерации с заданным порогом K.

При превышении номером текущей итерации порога K в устройстве 3-3, блоках 3-1 и 3-2 из запомненных сигналов для каждого ожидаемого ненулевого значения доплеровского сдвига частоты ω формируется сигнал начального приближения а затем итерационно получаются и запоминаются вспомогательный матричный сигнал где - z-я компонента вектора элемента изображения и сигнал очередного приближения элемента очищенного комплексного частотно-временного изображения до тех пор, пока номер текущей итерации не превысит заданный порог K.

При превышении номером текущей итерации заданного порога K в блоке 3-1 сформированные сигналы элементов очищенного изображения объединяются в матричный сигнал результирующего комплексного пространственно-частотно-временного изображения Н.

Отметим, что сигнал результирующего комплексного пространственно-частотно-временного изображения Н может быть трехмерным при синтезе изображения в координатах " азимут-доплеровский сдвиг частоты-задержка" или четырехмерным при синтезе изображения в координатах "азимут-угол места-доплеровский сдвиг частоты-задержка".

Объединение сигналов элементов очищенного изображения в матричный сигнал Н осуществляется путем присоединения элементов очищенного изображения друг к другу в порядке убывания или возрастания трех или четырех координат.

Например, при фиксированном значении азимутально-угломестного направления приема рассеянного радиосигнала матричный сигнал части результирующего комплексного пространственно-частотно-временного изображения формируется в соответствии со следующей формулой:

Матричный сигнал результирующего комплексного пространственно-частотно-временного изображения Н поступает в блок 4.

В блоке 4 вычисляются квадраты модулей матричного сигнала результирующего комплексного частотно-временного изображения Н. По локальным максимумам квадратов модулей определяется число рассеянных радиосигналов, по параметрам которых - значениям доплеровского сдвига частоты со, временной задержки q и азимутально-угломестного направления приема каждого рассеянного радиосигнала выполняют обнаружение, пространственную локализацию и сопровождение объектов.

Обнаружение, пространственная локализация и сопровождение объектов осуществляется известными способами, например, [3].

Кроме того, для повышения информативности в блоке 4 отображаются результаты обнаружения, пространственной локализации и сопровождения объектов.

Из приведенного описания следует, что устройство, реализующее предложенный способ, при формировании пространственно-частотно-временных изображений эхо-сигналов объектов осуществляет компенсацию маскирующих помех и многомерную обработку сигналов всех антенн решетки, которая в части пространственной обработки сигналов эквивалентна когерентному формированию суммарной пространственной диаграммы направленности антенной решетки.

Это, по сравнению с реализованной в способе-прототипе некогерентной обработкой сигналов отдельных антенн решетки, повышает, как минимум, на 3 дБ чувствительность в условиях некоррелированности шумов и помех и улучшает помехоустойчивость и помехозащищенность при наличии расположенных в окружающем пространстве источников коррелированных помех. Как следствие, повышается дальность обнаружения и точность сопровождения широкого класса пилотируемых и беспилотных малоразмерных низкоскоростных радиомолчащих объектов.

Таким образом, за счет применения новых операций когерентного формирования на каждой ожидаемой частоте доплеровского сдвига элементов очищенного от маскирующих помех трехмерного (четырехмерного) пространственно-частотно-временного изображения эхо-сигналов объектов из сигналов всех антенн решетки, вместо операций формирования совокупности двумерных частотно-временных изображений из сигналов отдельных антенн и последующего некогерентного их суммирования, удается решить поставленную задачу с достижением указанного технического результата.

Источники информации:

1. RU, патент, 2444754, МПК G01S 13/02, 2012 г.

2. RU, патент, 2524401, МПК G01S 13/02, 2014 г.

3. Справочник по радиолокации. Под ред. М. Сколника. Нью-Йорк, 1970. Пер. с англ. (в четырех томах) под общей ред. К.Н. Трофимова. Том 4.

Радиолокационные станции и системы. Под ред. М.М. Вейсбейна, М., "Сов.радио". 1978. 376 с.

4. Ратынский М.В. Адаптация и сверхразрешение в антенных решетках. М.: Радио и связь. 2003 г.

Способ дистанционного обнаружения и сопровождения радиомолчащих объектов, заключающийся в том, что выбирают передатчик, излучающий радиосигнал с расширенным спектром, синхронно принимают решеткой из N антенн многолучевые радиосигналы, включающие прямой радиосигнал передатчика и рассеянные объектами радиосигналы этого передатчика, синхронно преобразуют принятые антеннами радиосигналы в цифровые сигналы sn, где n - номер антенны, которые запоминают и объединяют в цифровой матричный сигнал S={s1, …, sn ,…, sN}T, из которого формируют цифровой прямой сигнал s', отличающийся тем, что преобразуют прямой сигнал s' в одночастотные матричные сигналы комплексной фазирующей функции Aω, каждый из которых включает гипотетические сигналы, рассеиваемые потенциальными подвижными и стационарными объектами в ожидаемых областях задержек и угловых направлений на каждой ожидаемой частоте доплеровского сдвига ω, матричные сигналы Aω запоминают, объединяют запомненные цифровые сигналы антенн sn в векторный сигнал , векторный сигнал s запоминают и преобразуют в сигнал элемента комплексного пространственно-частотно-временного изображения для нулевого значения ω=0 доплеровского сдвига частоты , где - матрица, эрмитово сопряженная с А0, с использованием сигнала в качестве начального приближения итерационно формируют и запоминают зависящий от предыдущего решения вспомогательный матричный сигнал , где - z-я компонента вектора элемента изображения , k=1, 2, … - номер итерации, а также сигнал очередного приближения элемента комплексного пространственно-частотно-временного изображения , где λ - множитель Лагранжа, и очищенный от прямого и рассеянных стационарными объектами сигналов векторный сигнал до тех пор, пока номер текущей итерации не превысит заданный порог K, после этого из очищенного векторного сигнала для каждого ожидаемого ненулевого значения доплеровского сдвига частоты ω формируют сигнал начального приближения , а затем итерационно получают и запоминают вспомогательный матричный сигнал и сигнал очередного приближения элемента комплексного пространственно-частотно-временного изображения до тех пор, пока номер текущей итерации не превысит заданный порог K, объединяют сформированные сигналы элементов изображения в матричный сигнал результирующего комплексного пространственно-частотно-временного изображения Н, после чего по локальным максимумам квадрата модуля матричного сигнала результирующего изображения , где - компонента матричного сигнала Н, определяют число рассеянных радиосигналов, по параметрам которых - значениям доплеровского сдвига частоты ω, временной задержки q и азимутально-угломестного направления приема каждого рассеянного радиосигнала - выполняют обнаружение, пространственную локализацию и сопровождение объектов.



 

Похожие патенты:

Изобретение относится к радиотехнике и может быть использовано в однопозиционных системах скрытного контроля наземного, морского и воздушного пространства, осуществляющих траекторное сопровождение подвижных объектов по прямым радиосигналам их бортовых радиопередатчиков и копиям этих радиосигналов, отраженным посторонними отражателями в виде естественных неоднородностей рельефа местности или стационарных и подвижных объектов искусственного происхождения.

Изобретение относится к контрольно-измерительной технике и может быть использовано для бесконтактного измерения начальной скорости снаряда, являющейся одной из важнейших баллистических характеристик оружия, оказывающей влияние на его боевые свойства.

Изобретение относится к области радиолокационной техники и может быть использовано при измерении эффективной площади рассеяния различных объектов радиолокации, соизмеримых и меньших длины волны.

Изобретение может быть использовано в бортовых навигационных системах. Достигаемый технический результат - повышение надежности и безопасности пилотирования летательного аппарата.

Изобретение относится к области радиолокации, радионавигации и может быть использовано для определения угловых координат источников излучения сигналов. Достигаемый технический результат изобретения заключается в решении задачи одновременной пеленгации источника постоянного излучения и источника кратковременного излучения.

Изобретение относится к области радионавигации и может быть использовано для определения угловых координат источников фазоманипулированных (ФМ) радиосигналов с известными законами кодирования при наличии радиопомех.

Изобретение относится к области радиолокации, в частности к устройствам определения параметров движения цели в бистатических радиолокационных системах. Достигаемый технический результат - повышение точности измерения местоположения цели во всей области возможного приема сигнала, сокращение времени измерения координат, а также повышение помехозащищенности работы просветной бистатической РЛС.

Изобретение относится к области радиолокационной техники и может быть использовано при построении бортовых импульсных некогерентных радиовысотомеров. Технический результат - расширение диапазона измеряемых дальностей, снижение энергопотребления, снижение уровня паразитных сигналов и наводок по цепям питания и управления.

Изобретение относится к многоканальным средствам высокоскоростной цифровой обработки сигналов. Технический результат заключается в повышении максимальной производительности за счёт введения сопроцессора, позволяющего осуществлять обработку сигнала посредством распараллеливания вычислений, коммутатора шины передачи данных PCI Express, двух многоканальных ячеек ввода-вывода высокочастотных сигналов, оснащённых как минимум двумя ПЛИС, как минимум двумя четырёхканальными АЦП, как минимум двумя четырёхканальными ЦАП, модуля приёма и комплексирования сигналов с двух антенн ССН (GPS, Glonass, Galileo) и модуля ИНС, модуля интерфейсов МКИО РИО, введения в программное обеспечение изделия специализированных модулей цифровой обработки сигналов, внедрения дополнительного радиатора, размещаемого в верхней части изделия, применения модифицированного средства хранения твердотельных накопителей, резервного модуля электропитания.

Изобретение относится к радиотехнике, а именно к способам определения местоположения (ОМП) источника радиоизлучения (ИРИ), и может быть использовано в навигационных, пеленгационных, локационных средствах для определения местоположения ИРИ.

Изобретение относится к области радиолокационной техники и может быть использовано при измерении эффективной площади рассеяния различных объектов радиолокации, соизмеримых и меньших длины волны.

Изобретение относится к области радиолокации, радионавигации и может быть использовано для определения угловых координат источников излучения сигналов. Достигаемый технический результат изобретения заключается в решении задачи одновременной пеленгации источника постоянного излучения и источника кратковременного излучения.

Изобретение относится к области оптико-электронного приборостроения и касается оптической системы формирования и наведения лазерного пучка. Система включает в себя устройство сканирования, передающий лазерный модуль с оптоволоконным выводом, внеосевое параболическое зеркало, конструктивно связанное с устройством наведения, блок фокусировки, включающий механизм перемещения торца сердцевины вдоль ее оптической оси и плоское вторичное зеркало, на которое направлен лазерный пучок, который, отражаясь, падает на главное зеркало.

Изобретение относится к радиолокации и может использоваться для оценки наиболее достоверных характеристик радиолокационных средств. Достигаемый технический результат – возможность проведения полунатурных испытаний радиолокационных станций различного типа с возможностью имитации параметров радиолокационных целей.

Изобретение относится к пассивным системам видения оптического, инфракрасного и миллиметрового диапазонов длин волн, предназначенным для наблюдения за объектами, и может найти применение в пассивных системах ближнего зондирования наземных и воздушных объектов.

Изобретение относится к радиолокации и может быть использовано для межпозиционного отождествления результатов измерений и определения координат воздушных целей в многопозиционной радиолокационной системе (МПРЛС) в условиях многоцелевой обстановки.

Изобретение относится к радиолокации и может использоваться в радиотехнических системах непрерывного излучения, установленных на подвижных объектах, для получения радиолокационного изображения (РЛИ) в процессе дистанционного зондирования земной (водной) поверхности.

Изобретение относится к области радиотехники, в частности к цифровой обработке радиолокационных сигналов, и предназначено для повышения эффективности классификации и бланкирования дискретных пассивных помех.

Изобретение относится к области радиолокационного зондирования с использованием одиночных сверхширокополосных (СШП) сигналов и может быть использовано при зондировании нескольких близкорасположенных объектов, например групповой воздушной цели в составе нескольких самолетов.

Способ радиолокационного обнаружения траектории цели относится к области радиолокации, конкретно к способам обнаружения движущихся воздушных целей активными наземными или бортовыми радиолокационными станциями (РЛС), и может использоваться в РЛС обнаружения воздушных целей, осуществляющих последовательный регулярный обзор заданной области пространства.

Изобретение относится к области радионавигации и может быть использовано для контроля геометрии крупногабаритных объектов при их эксплуатации. Способ включает измерение пространственных координат узловых точек с помощью навигационных радиосигналов спутниковых радионавигационных систем (СРНС) ГЛОНАСС и GPS, а также сигналов наземных и воздушных радионавигационных систем, функционально им аналогичных.
Наверх