Способ изготовления полупроводникового прибора

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления биполярного транзистора с высоким напряжением пробоя. Технология способа состоит в следующем: на пластинах кремния р-типа проводимости формируют скрытый n+ слой по стандартной технологии, затем последовательно наращивают эпитаксиальный слой р-типа проводимости толщиной 3,5 мкм с концентрацией легирующей примеси бора 1,0*1015 см-3, который служит продолжением подложки, затем формируют эпитаксиальный слой n-- типа проводимости толщиной 7,1 мкм с концентрацией легирующей примеси фосфора 1,0*1015 см-3 и верхний эпитаксиальный слой n- типа проводимости толщиной 4,4 мкм с концентрацией легирующей примеси фосфора 2,3*1015 см-3. Формирование пленки кремния на кремниевой подложке проводили со скоростью роста 20 нм/мин при температуре 750°С, давлении 1,33*10-5 Па и скорости подачи силана 14,3 см3/мин. Активные области транзистора и электроды к ним формировали по стандартной технологии. Изобретение обеспечивает повышение значений напряжения пробоя приборов, улучшение параметров и качества приборов, увеличение выхода годных. 1 табл.

 

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления биполярного транзистора с высоким напряжением пробоя.

Известен способ изготовления полупроводникового прибора [Заявка 1241168 Япония, МКИ H01L 29/72] путем последовательного нанесения на кремниевой подложке слоя диэлектрика, тугоплавкого металла или его силицида и поликристаллического или аморфного кремния. В последний имплантируют ионы мышьяка. На второй кремниевой подложке наращивают эпитаксиальный слой n- типа проводимости, после чего обе пластины накладывают друг на друга так, что слой легированный мышьяком, и эпитаксиальный слой соприкасаются, и отжигают при температуре 800°С, в результате чего они соединяются. Вторую подложку стравливают до вскрытия эпитаксиального слоя и наращивают на нем рабочий эпитаксиальный слой. И на нем формируют структуру биполярного транзистора. В таких приборах из-за низкой технологичности образуются неровности, которые ухудшают электрические параметры приборов.

Известен способ изготовления полупроводникового прибора [Заявка 2148847 Япония, МКИ H01L 21/331] путем формирования на подложке р-типа проводимости скрытого n+ слоя и эпитаксиального слоя n- типа проводимости. В последнем создают полевой окисел и маску, защищающую область формирования активной базы. Через нее эпитаксиальный слой травят на глубину 3-5 мкм, осаждают на пластину поликристаллический кремний, легированный донорной примесью. Из последнего формируют коллекторный электрод с контактной площадкой.

Недостатками этого способа являются:

- низкие значения напряжения пробоя;

- высокие значения токов утечек;

- низкая технологичность.

Задача, решаемая изобретением: повышение значений напряжения пробоя, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Задача решается формированием системы эпитаксии последовательным наращиванием слоев кремния: нижний эпитаксиальный слой р-типа с концентрацией легирующей примеси бора 1,0*1015 см-3, средний эпитаксиальный слой n- типа с концентрацией легирующей примеси фосфора 1,0*1015 см-3, верхний эпитаксиальный слой n- типа с концентрацией легирующей примеси фосфора 2,3*1015 см-3.

Технология способа состоит в следующем: на пластинах кремния р-типа проводимости формируют скрытый n+ слой, по стандартной технологии, затем последовательно наращивают эпитаксиальный слой р-типа проводимости толщиной 3,5 мкм с концентрацией легирующей примеси бора 1,0*1015 см-3, который служит продолжением подложки, затем формируют эпитаксиальный слой n-- типа проводимости толщиной 7,1 мкм с концентрацией легирующей примеси фосфора 1,0*1015 см-3 и верхний эпитаксиальный слой n- типа проводимости толщиной 4,4 мкм с концентрацией легирующей примеси фосфора 2,3*1015 см-3. Формирование пленки кремния на кремниевой подложке проводили со скоростью роста 20 нм/мин при температуре 750°С, давлении 1,33*10-5 Па и скорости подачи силана 14,3 см3/мин. Активные области транзистора и электроды к ним формировали по стандартной технологии.

По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы. Результаты обработки представлены в таблице.

Экспериментальные исследования показали, что выход годных структур на партии пластин, сформированных в оптимальном режиме, увеличился на 21,9%.

Технический результат: повышение значений напряжения пробоя, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных.

Предложенный способ изготовления полупроводникового прибора формированием системы эпитаксии последовательным наращиванием слоев кремния: нижний эпитаксиальный слой р-типа с концентрацией легирующей примеси бора 1,0*1015 см-3, средний эпитаксиальный слой n- типа с концентрацией легирующей примеси фосфора 1,0*1015 см-3, верхний эпитаксиальный слой n- типа с концентрацией легирующей примеси фосфора 2,3*1015 см-3, позволяет повысить процент выхода годных приборов и улучшить их надежность.

Способ изготовления полупроводникового прибора, включающий подложку, процессы формирования n+ скрытого слоя, создания активных областей транзистора и эпитаксиального слоя, отличающийся тем, что формируют систему эпитаксии последовательным наращиванием слоев кремния: нижний эпитаксиальный слой р-типа с концентрацией легирующей примеси бора 1,0*1015 см-3, средний эпитаксиальный слой n- типа с концентрацией легирующей примеси фосфора 1,0*1015 см-3, верхний эпитаксиальный слой n- типа с концентрацией легирующей примеси фосфора 2,3*1015 см-3.



 

Похожие патенты:

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления биполярных транзисторов с высоким коэффициентом усиления.

Изобретение относиться к области технологии производства полупроводниковых приборов, в частности к технологии изготовления приборов с гетероструктурой с пониженной дефектностью.

Изобретение относится к области технологии производства полупроводникового прибора, в частности к технологии изготовления биполярного транзистора с высоким напряжением пробоя.

Изобретение относится к области полупроводниковой микроэлектроники. Биполярный транзистор, выполненный на основе гетероэпитаксиальных структур SiGe, включает подложку из высокоомного кремния с кристаллографической ориентацией (111), буферный слой из нелегированного кремния, субколлекторный слой из сильнолегированного кремния n-типа проводимости, поверх которого сформирован коллектор из кремния n-типа проводимости, тонкая база из SiGe р-типа проводимости, эмиттер из кремния n-типа проводимости, контактные слои на основе кремния n-типа проводимости и омические контакты.

Изобретение относится к способам изготовления полупроводниковых приборов и может быть использовано в технологии изготовления высоковольтных биполярных транзисторов с изолированным затвором на основе кремния.

Изобретение относится к микроэлектронике и может быть использовано в технологии изготовления биполярных транзисторов. .

Изобретение относится к микроэлектронике, а именно к области создания интегральных схем (ИС) с использованием биполярных транзисторов. .

Изобретение относится к области силовой полупроводниковой техники. .

Изобретение относится к области полупроводниковой техники и может быть использовано при росте эпитаксиальных слоев карбида кремния (SiC) с малой плотностью базальных дислокаций.

Изобретение относится к классу полупроводниковых приборов и может быть использовано в микро-, нано- и оптоэлектронике. Функциональный элемент полупроводникового прибора имеет основу, выполненную из кремния со сформированным на нем переходным слоем, содержащим карбид кремния, на котором имеется покрывающий слой в виде нанопленки углерода с кристаллической решеткой алмазного типа.

Изобретение относится к области микроэлектронной технологии, а именно к способу формирования полупроводниковых структур для преобразования энергии радиохимического распада С-14 в постоянный ток.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления гетероструктур с низкой плотностью дефектов.

Использование: для получения наноразмерных композитных структур. Сущность изобретения заключается в том, что способ формирования упорядоченного массива нанокристаллов или нанокластеров кремния в диэлектрической матрице включает формирование на подложке многослойной пленки, состоящей из чередующихся слоев SiNx и Si3N4, где 0<х<4/3, методом низкочастотного плазмохимического осаждения из газовой фазы с использованием смеси моносилана (SiH4) и аммиака (NH3) с объемным соотношением [NH3]/[SiH4] в диапазоне от 1 до 5 при давлении в камере 100-250 Па, температуре подложки 20-400°С и удельной мощности разряда 0,02-0,2 Вт/см2 с последующим отжигом полученной многослойной пленки в инертной атмосфере при температуре в диапазоне 800-1150°С не менее 5 минут с получением многослойной матрицы с нанокристаллами или нанокластерами.

Изобретение относится к области полупроводниковой техники и может быть использовано при росте эпитаксиальных структур монокристаллического карбида кремния (SiC) с малой плотностью эпитаксиальных дефектов.

Изобретение относится к технологии эпитаксии легированных слоев германия, основанной на сочетании в одной вакуумной камере одновременных осаждения германия из германа и сублимации германия с легирующим элементом с поверхности источника легированного германия, разогретого электрическим током, и может быть использовано для производства полупроводниковых структур.

Изобретение предназначено для производства гетероэпитаксиальных структур для изготовления светодиодов, фотоприемников, полупроводниковых лазеров, транзисторов и диодов.

Изобретение относится к области микроэлектронной технологии, а именно к способу получения полупроводниковой гетероструктуры карбида кремния на кремниевой подложке.

Настоящее изобретение предусматривает способ получения шаблона для эпитаксиального выращивания. Способ содержит стадию поверхностной обработки, включающий диспергирование Ga-атомов на поверхности сапфировой подложки, и стадию эпитаксиального выращивания AlN-слоя на сапфировой подложке, где при распределении концентрации Ga в направлении глубины перпендикулярно поверхности сапфировой подложки во внутренней области AlN-слоя, исключая зону вблизи поверхности до глубины 100 нм от поверхности AlN-слоя, полученной вторичной ионно-массовой спектрометрией, положение в направлении глубины, где Ga - концентрация имеет максимальное значение, находится в области вблизи границы раздела, расположенной между границей раздела сапфировой подложки и положением, на 400 нм отстоящим от границы раздела к стороне AlN-слоя, и максимальное значение Ga-концентрации составляет 3×1017 атом/см3 или более и 2×1020 атом/см3 или менее.
Наверх