Способ измерения электрической проводимости чистой и деионизированной жидкости

Изобретение относится к области электрических измерений и может быть использовано в системах контроля качества чистой и деионизированной жидкости, в частности воды, путем измерения ее электрической проводимости в производстве полупроводниковых приборов и в фармацевтической промышленности. Способ измерения электрической проводимости чистой и деионизированной жидкости предназначен для использования в системах контроля качества чистой и деионизированной жидкости, в частности воды, в производстве полупроводниковых приборов и в фармацевтической промышленности. Предварительно измерительные пластинчатые электроды гальванически разделяют диэлектриком от жидкости. На измерительные пластинчатые электроды с постоянным межэлектродным расстоянием и постоянной площадью поверхности накладывают напряжение от источника тока и устанавливают зависимость межу электрическим параметром и временем разряда для определения общей электрической проводимости объема воды между измерительными пластинчатыми электродами. Вводят дополнительную емкость известного значения последовательно с измерительными пластинчатыми электродами, накладывают на измерительные пластинчатые электроды напряжение от источника тока и устанавливают зависимость между электрическим током и временем разряда для определения общей электрической проводимости объема воды между измерительными пластинчатыми электродами с учетом дополнительной емкости. Далее, используя полученные по установленным зависимостям коэффициенты, определяют электрическую проводимость жидкости. При использовании изобретения существенно повышается точность измерений за счет возможности определения собственной электрической проводимости жидкости между измерительными пластинчатыми электродами, отделенными диэлектриком от этой жидкости, что полностью исключает ее насыщение ионами металлов, повышающими электрическую проводимость и искажающими результат измерений. 1 ил.

 

Изобретение относится к области электрических измерений и может быть использовано в системах контроля качества чистой и деионизированной жидкости, в частности, воды путем измерения ее электрической проводимости в производстве полупроводниковых приборов и в фармацевтической промышленности.

Известен способ косвенного измерения электрической проводимости воды, при котором путем измерения тока и напряжения в цепи с измеряемым объектом определяют проводимость по закону Ома (Измерения в электронике: Справочник. В.А. Кузнецов, В.А. Долгов, В.М. Коневских и др.; Под ред. В.А. Кузнецова. - М. Энергоатомиздат, 1987., стр. 192).

Основным недостатком известного способа является низкая точность измерений при использовании за счет поляризации измерительных электродов, поэтому определяемая электрическая проводимость воды может значительно отличаться от ее фактического значения.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков и достигаемому результату (прототипом) является способ определения электрической проводимости природных вод, при котором накладывают на воздухе напряжение от гальванического источника постоянного тока на измерительные пластинчатые электроды с постоянным межэлектродным расстоянием и постоянной площадью поверхности и измеряют напряжения на электродах. Затем электроды погружают в воду и измеряют напряжение. После этого определяют статическую диэлектрическую проницаемость. Затем отключают источник тока, замыкают между собой измерительные электроды и после снижения напряжения до нулевого значения размыкают их. Измеряют установившееся напряжение после размыкания и соответствующее ему время. Определяют момент времени, для которого установившееся напряжение уменьшилось в е раз, устанавливают зависимость межу электрическим параметром, в качестве которого используют напряжение, и временем разряда для определения общей электрической проводимости объема воды между измерительными пластинчатыми электродами и рассчитывают время релаксации. При этом используют процесс электрической разрядки измерительных электродов, в течении которой определяется скорость изменения значения электрического параметра, такого, как напряжение на измерительных электродах, или тока через них. По статической диэлектрической проницаемости и полученному времени релаксации определяют электрическую проводимость воды (патент RU 2251119, МПК G01R 27/22 (2000.01), G01N 27/06 (2000.01).

Основным недостатком описанного способа является низкая точность измерений электрической проводимости чистых и деионизированных жидкостей, обусловленная применением электродов, имеющих гальваническую связь с жидкостью, в связи с чем происходит уменьшение ее чистоты путем насыщения ионами металла, в результате чего увеличивается погрешность измерения электрической проводимости.

Техническая проблема, решение которой обеспечивается при осуществлении изобретения, заключается в создании способа измерения электрической проводимости чистой и деионизированной жидкости с повышенной точностью определения электрической проводимости.

Решение данной технической проблемы достигается тем, что в способе измерения электрической проводимости чистой и деионизированной жидкости, при котором на измерительные пластинчатые электроды с постоянным межэлектродным расстоянием и постоянной площадью поверхности накладывают напряжение от источника тока и устанавливают зависимость межу электрическим параметром и временем разряда для определения общей электрической проводимости объема воды между измерительными пластинчатыми электродами, согласно изобретению предварительно измерительные пластинчатые электроды гальванически разделяют диэлектриком от жидкости, после устанавливают зависимость межу электрическим током и временем разряда, из которой определяют коэффициенты a1, b1, полученные ее аппроксимацией выражением:

где t - время разряда;

- U0 - напряжение на измерительных пластинчатых электродах; вводят дополнительную емкость известного значения последовательно с измерительными пластинчатыми электродами, накладывают на измерительные пластинчатые электроды напряжение от источника тока и устанавливают зависимость межу электрическим током и временем разряда для определения общей электрической проводимости объема жидкости между измерительными пластинчатыми электродами с учетом дополнительной емкости, из которой определяют коэффициенты a2, b2, полученные ее аппроксимацией выражением:

далее, используя полученные коэффициенты, определяют электрическую проводимость жидкости в соответствии со следующим выражением:

где С0 - известное значение конденсатора, включенного последовательно с измерительными пластинчатыми электродами.

Таким образом, разделение измерительных пластинчатых электродов от жидкости диэлектриком, установление зависимости межу током и временем разряда для определения общей электрической проводимости объема воды между измерительными пластинчатыми электродами на основе измерения в процессе электрической разрядки измерительных пластинчатых электродов не менее трех значений тока, протекающего через измерительные пластинчатые электроды, и соответствующих этим значениям тока моментов времени, из которой определяют коэффициенты a1, b1 в соответствии с выражением (1), введение дополнительной емкости известного значения последовательно с измерительными пластинчатыми электродами после прекращения электрического тока, протекающего через эти электроды, заряжание измерительных пластинчатых электродов через дополнительную емкость напряжением U0, последующее наложение нулевого напряжения, тем самым реализуя процесс электрической разрядки измерительных пластинчатых электродов с учетом дополнительной емкости, установление зависимости межу электрическим током и временем разряда на основе измерения не менее трех значений тока, протекающего через измерительные пластинчатые электроды, и соответствующих моментов времени, для определения общей электрической проводимости объема жидкости между измерительными пластинчатыми электродами с учетом дополнительной емкости, из которой определяют коэффициенты а2, b2 в соответствии с выражением (2), последующее определение электрической проводимости жидкости при использовании зависимости (3) позволяют повысить точность измерений за счет возможности определения собственной электрической проводимости жидкости (3) между измерительными пластинчатыми электродами, отделенными диэлектриком от этой жидкости, что полностью исключает ее насыщение ионами металлов, повышающими электрическую проводимость и искажающими результат измерений.

Предлагаемое изобретение поясняется чертежом, на котором представлена схема реализации способа измерения электрической проводимости чистой и деионизированной жидкости.

Измерение электрической проводимости чистой и деионизированной жидкости реализовано посредством системы жестко закрепленных двух измерительных пластинчатых электродов 1, отделяемых диэлектриком 2 от исследуемой жидкости 3. конденсатора 4 с известной электрической емкостью, последовательно связанного с одним электродом из двух электродов 1, электрическим ключом 5, позволяющим в заданный момент времени исключить влияние конденсатора 4 на протекание тока через электроды 1, и генератором 6 импульсов, преобразователя 7 ток-напряжение, подключенного к другому электроду из двух электродов 1 и аналого-цифровому преобразователю 8, блока управления 9, связанного с аналого-цифровым преобразователем 8 и генератором 6 импульсов. При этом электрический ключ 5 подключен параллельно конденсатору 4.

Способ измерения электрической проводимости чистой и деионизированной жидкости осуществляется следующим образом.

Предварительно измерительные пластинчатые электроды 1 с постоянным межэлектродным расстоянием и постоянной площадью поверхности гальванически разделяют диэлектриком 2 от жидкости 3.

В начале измерений электрический ключ 5 замыкают, исключая влияние конденсатора 4 на протекание тока через электроды 1. С помощью генератора 6 импульсов через замкнутый электрический ключ 5 накладывают напряжение U0 на измерительные пластинчатые электроды 1, заряжая их, после чего на выходе генератора 6 устанавливается нулевое напряжение, в результате чего начинает протекать электрический ток разрядки, в течении которого измеряют не менее трех его значений и соответствующих моментов времени. Измерение осуществляют при помощи аналого-цифрового преобразователя 8, при этом предварительно ток, протекающий через измерительные пластинчатые электроды 1, преобразуется в пропорциональное по значению напряжение посредством преобразователя 7 ток-напряжение. Моменты времени регистрируют блоком управления 9. Устанавливают зависимость межу током и временем разряда для определения общей электрической проводимости объема жидкости 3 между измерительными пластинчатыми электродами 1. Полученные результаты аппроксимируют выражением (1).

Ожидают прекращения электрического тока через измерительные пластинчатые электроды 1. После прекращения электрического тока через измерительные пластинчатые электроды 1 размыкается электрический ключ 5, тем самым вводят дополнительную емкость известного значения - конденсатор 4 - последовательно с одним из измерительных пластинчатых электродов 1.

Далее накладывают на измерительные пластинчатые электроды 1 напряжение U0 от источника тока, то есть посредством генератора 6 импульсов через конденсатор 4 накладывают напряжение U0 на измерительные пластинчатые электроды 1, заряжая их, после чего на выходе генератора 6 импульсов устанавливается нулевое напряжение, в результате чего начинает протекать электрический ток разрядки с учетом дополнительной емкости известного значения, в течении которого измеряется не менее трех его значений и соответствующих моментов времени. Устанавливают зависимость межу электрическим током и временем разряда для определения общей электрической проводимости объема жидкости 3 между измерительными пластинчатыми электродами 1 с учетом дополнительной емкости. Полученные результаты аппроксимируют выражением (2).

По результатам аппроксимации, при использовании зависимости (3), определяют электрическую проводимость исследуемой жидкости.

Таким образом, предлагаемое изобретение позволяет повысить достоверность определения электрической проводимости чистой и деоинизированной жидкости без искажения результатов измерений.

Способ измерения электрической проводимости чистой и деионизированной жидкости, при котором на измерительные пластинчатые электроды с постоянным межэлектродным расстоянием и постоянной площадью поверхности накладывают напряжение от источника тока и устанавливают зависимость между электрическим параметром и временем разряда для определения общей электрической проводимости объема воды между измерительными пластинчатыми электродами, отличающийся тем, что предварительно измерительные пластинчатые электроды гальванически разделяют диэлектриком от жидкости, после установления зависимости между электрическим током и временем разряда, из которой определяют коэффициенты а1, b1, полученные ее аппроксимацией выражением:

где t - время разряда;

U0 - напряжение на измерительных пластинчатых электродах,

вводят дополнительную емкость известного значения последовательно с измерительными пластинчатыми электродами, накладывают на измерительные пластинчатые электроды напряжение от источника тока и устанавливают зависимость между электрическим током и временем разряда для определения общей электрической проводимости объема жидкости между измерительными пластинчатыми электродами с учетом дополнительной емкости, из которой определяют коэффициенты а2, b2, полученные ее аппроксимацией выражением:

далее, используя полученные коэффициенты, определяют электрическую проводимость жидкости в соответствии со следующим выражением:

где С0 - известное значение конденсатора, включенного последовательно с измерительными пластинчатыми электродами.



 

Похожие патенты:

Изобретение относится к области измерительной техники, а именно к контактным датчикам электропроводности СТД-зондов, и предназначено для измерения удельной электропроводности морской воды непосредственно в среде.

Изобретение относится к области измерительной техники, а именно к области кондуктометрии. Контактный датчик удельной электрической проводимости (УЭП) жидкости состоит из возбуждающих и измерительных электродов, представляющих собой круглые стержни одинаковой длины и диаметра, установленные на опорном элементе, изготовленном из непроводящего материала в виде прямоугольной рамки, попарно, параллельно друг другу, таким образом, что расстояния между осями электродов в парах меньше расстояния между соседними парами, расстояния между осями электродов в двух или более парах различаются между собой, при этом каждый измерительный электрод снабжен дополнительным электрически связанным и смежным с ним электродом, образующим с другим дополнительным электродом дополнительную пару, причем датчик снабжен устройством контроля и обработки данных, содержащее устройство сравнения, формирующее сигнал, зависящий от изменения отношения значений УЭП, измеренных в межэлектродных промежутках упомянутых пар.

Изобретение относится к области измерительной техники, к области кондуктометрии. Сущность: контактный датчик содержит опорный элемент в виде отрезка трубы из непроводящего материала, на котором перпендикулярно оси опорного элемента установлены возбуждающие и измерительные электроды.

Использование: для контроля стадии поликонденсации в производстве алкидных лаков. Сущность изобретения заключается в том, что способ контроля стадии поликонденсации в производстве алкидных лаков включает использование измерений электрофизических параметров реакционной массы, при этом контроль стадии поликонденсации осуществляют посредством непрерывного во времени измерения текущей величины активного сопротивления Rp реакционной массы и тангенса угла диэлектрических потерь tgδ реакционной массы, при этом параллельно, с интервалом 0,5 часа, проводят отбор проб реакционной массы и их лабораторный анализ, в момент отбора проб замеряют величины Rp и tgδ реакционной массы, по результатам измерений и лабораторных анализов строят графики зависимости между результатами измерений и определёнными значениями вязкости реакционной массы и используют полученные зависимости значений Rp и tgδ и вязкости для контроля стадии поликонденсации в производстве алкидных лаков, при этом достижение значений Rp и tgδ, при которых величина вязкости реакционной массы соответствует величине, требуемой регламентом, служит сигналом завершения стадии поликонденсации.

Изобретение относится к области исследования свойств и характеристик органических и неорганических веществ и жидкостей электрофизическими методами, в частности к оперативным методам контроля окисления растительного масла в производстве олифы.

Настоящее изобретение относится к способу установления факта завершения воссоздания раствора в контейнере. Способ установления факта завершения воссоздания раствора в контейнере содержит этапы, на которых выбирают заранее заданные количества твердого вещества и жидкого растворителя, из которого следует приготовить воссозданный раствор, таким образом, чтобы воссозданный раствор не достигал своего предела насыщения; готовят раствор, растворяя в контейнере заранее заданное количество твердого вещества в заранее заданном количестве жидкого растворителя; измеряют величину, выбранную из импеданса (Z) или сопротивления (R) раствора в контейнере по выбору; устанавливают, действительно ли изменение измеряемой величины ниже заранее заданного предела в интервале времени измерений заранее заданной продолжительности; устанавливают факт того, что воссоздание раствора завершено и что воссозданный раствор образован, если изменение измеряемой величины ниже заданного предела в интервале времени измерений заранее заданной продолжительности; определяют время воссоздания (tR) раствора в контейнере, представляющее собой промежуток времени между началом приготовления раствора и моментом времени, при котором изменение измеренного импеданса (Z) или сопротивления (R) раствора становится ниже заданного предела в интервале времени измерений заранее заданной продолжительности; перед определением времени (tR) воссоздания раствора, приготовленного из заранее заданных количеств твердого вещества и жидкого растворителя, измеряют импедансы (Z) или сопротивления (R) множества воссозданных растворов, приготовленных из одного и того же твердого вещества и одного и того же жидкого растворителя, причем индивидуальные воссозданные растворы из множества воссозданных растворов имеют различные концентрации твердого вещества, растворенного в соответствующем отдельном воссозданном растворе; из измерения импедансов (Z) или сопротивлений (R) множества воссозданных растворов определяют соотношение между импедансом (Z) или сопротивлением (R) и концентрацией (с) твердого вещества, растворенного в этом растворе; и определяют характер растворения в зависимости от времени растворения заранее заданного количества твердого вещества в заранее заданном количестве жидкого растворителя путем присвоения соответствующего измеренного импеданса (Z) или сопротивления (R) раствора соответствующей концентрации (с) в соответствии с измеренным соотношением между импедансом (Z) или сопротивлением (R) и концентрацией (с) твердого вещества, растворенного в растворе.

Использование: для измерения влажности почв. Сущность изобретения заключается в том, что способ определения влажности почв включает термостатно-весовой способ определения влажности и способ определения влажности почв по диэлектрическим свойствам почвы, при этом почва принимается за электролит электролитических конденсаторов, и измеряют эквивалентное последовательное сопротивление (ЭПС) этого электролита, и с целью определения влажности пробуриваются две параллельные скважины, в которые заглубляются два цилиндра, на стенках которых закрепляются обкладки конденсаторов, которые изолированы друг от друга и от контролируемой почвы, при этом при спуске их в скважины пространство, образованное обкладками конденсатора, заполняется почвой с ненарушенной структурой, при этом почву при подготовке скважин отбирают с каждого слоя для определения влажности почвы термостатно-весовым способом.

Использование: для создания устройств бесконтактного измерения комплексной диэлектрической проницаемости. Сущность изобретения заключается в том, что способ измерения комплексной диэлектрической проницаемости жидкостей заключается в том, что материал облучают электромагнитной волной по нормали к поверхности, измеряют интенсивность отраженной волны, при этом в исследуемую полупроводящую среду погружается плоская металлическая пластина, определяется зависимость интенсивности отраженного поля от глубины погружения, при этом искомый параметр определяется подбором до максимального совпадения положений максимумов и минимумов измеренной интерференционной зависимости с рассчитанной.

Настоящее изобретение относится к способу измерения гемолиза или гематокрита в образце крови, включающему: a) измерение проводимости образца крови по меньшей мере на трех многочастотных входах переменного тока; b) вычисление значения иммиттанса за каждый из по меньшей мере трех многочастотных входов переменного тока; и c) подвергание каждого значения иммиттанса, вычисленного на этапе b), одной из (1) функции, которая отображает значения иммиттанса к уровням лизированной крови, и определение уровня лизированной крови в образце, или (2) функции, которая отображает значения иммиттанса к уровням гематокрита, и определение уровня гематокрита в образце, в то же время компенсируя уровень электролита образца.

Использование: для исследования любых акваторий Мирового океана. Сущность изобретения заключается в том, что заданный участок морской поверхности облучают, при углах падения, когда рассеянный назад сигнал определяет резонансный механизм, радиоволнами СВЧ диапазона на вертикальной и на горизонтальной поляризациях, причем на одной и той же частоте принимают рассеянный назад сигнал на вертикальной и на горизонтальной поляризациях, вычисляют поляризационное отношение, этот же участок морской поверхности облучают радиоволнами на той же частоте при малых углах падения, когда рассеянный назад сигнал определяет механизм квазизеркального отражения, определяют дисперсию локальных углов наклона морской поверхности, по полученным значениям дисперсии пересчитывают поляризационное отношение на ситуацию, когда резонансные волны распространяются по плоской поверхности, и по нему вычисляют относительную диэлектрическую проницаемость.

Изобретение относится к области электрических измерений и может быть использовано в системах контроля качества чистой и деионизированной жидкости, в частности воды, путем измерения ее электрической проводимости в производстве полупроводниковых приборов и в фармацевтической промышленности. Способ измерения электрической проводимости чистой и деионизированной жидкости предназначен для использования в системах контроля качества чистой и деионизированной жидкости, в частности воды, в производстве полупроводниковых приборов и в фармацевтической промышленности. Предварительно измерительные пластинчатые электроды гальванически разделяют диэлектриком от жидкости. На измерительные пластинчатые электроды с постоянным межэлектродным расстоянием и постоянной площадью поверхности накладывают напряжение от источника тока и устанавливают зависимость межу электрическим параметром и временем разряда для определения общей электрической проводимости объема воды между измерительными пластинчатыми электродами. Вводят дополнительную емкость известного значения последовательно с измерительными пластинчатыми электродами, накладывают на измерительные пластинчатые электроды напряжение от источника тока и устанавливают зависимость между электрическим током и временем разряда для определения общей электрической проводимости объема воды между измерительными пластинчатыми электродами с учетом дополнительной емкости. Далее, используя полученные по установленным зависимостям коэффициенты, определяют электрическую проводимость жидкости. При использовании изобретения существенно повышается точность измерений за счет возможности определения собственной электрической проводимости жидкости между измерительными пластинчатыми электродами, отделенными диэлектриком от этой жидкости, что полностью исключает ее насыщение ионами металлов, повышающими электрическую проводимость и искажающими результат измерений. 1 ил.

Наверх