Способ изготовления преформы на основе водорастворимой подложки для лопаток компрессора

Изобретение относится к способу изготовления преформы на основе водорастворимой подложки. Техническим результатом является устранение возможности повреждения и изменения конфигурации волокнистой структуры преформы при отделении пришитого основания в процессе изготовления изделия. Технический результат достигается способом изготовления преформы на основе водорастворимой подложки для лопаток компрессора, который включает автоматизированную нашивку армирующего волокна на подложку по TFP-технологии с последующим удалением элементов подложки. При этом в качестве материала подложки используют водорастворимый материал на основе поливинилового спирта - флизелин, а процесс удаления элементов подложки проводят при контроле качества образца преформы до полного растворения и вымывания водой частиц флизелина. 2 з.п. ф-лы, 6 табл., 25 пр.

 

Изобретение относится к области изготовления преформ-заготовок изделий из полимерных композиционных материалов (ПКМ). Изобретение может быть использовано в базовых отраслях промышленности, таких как авиастроение, космическая отрасль, энергетика, судо- и автомобилестроение для производства деталей из ПКМ, которые могут выдерживать экстремальные механические нагрузки, обеспечивая при этом возможность значительной экономии в весе.

Детали и их компоненты из ПКМ изготавливаются на основе преформы после укладки необходимого количества слоев армирующих волокон на несущий слой, помещения заготовки в оснастку, пропитки связующим материалом, например, полиэфирной смолой, эпоксидной смолой или им подобной, и последующего отверждения. При этом зафиксированная направленность армирующих волокон имеет решающее влияние на жесткость и прочность целевого изделия.

Одним из возможных путей обеспечения предъявляемым требованиям к ориентации волокон в соответствии с силовой нагрузкой является TFP-технология (Tailored Fiber Placement - направленная укладка волокна). TFP-технология включает в себя укладку волокнистых прядей для механического армирования ("пучки" волокон), которые, в свою очередь, формируются из множества отдельных армирующих волокон, проходящих параллельно друг другу по требуемой, как правило криволинейной, траектории, и их крепление с помощью фиксирующей нити на несущем слое. Следствием этого является направленная ориентация отдельных волокнистых прядей, которая оптимальным образом соответствует направлению нагрузки, действующей на целевое изделие.

TFP-технология является одним из современных и перспективных способов создания предварительных заготовок изделий из ПКМ, отличающаяся повышенной производительностью, высокой точностью и воспроизводимостью процесса. Готовая преформа, как правило, имеет конечную конфигурацию соответствующего изделия. Изготовление волокнистых преформ с использованием TFP-технологии выполняется на обычных автоматических швейных и вышивальных машинах с ЧПУ, которые используются в текстильной промышленности. В качестве несущей основы для нашивки в настоящее время используются тканые армирующие материалы (угле-, стеклоткань) и термопластичная пленка.

Однако из-за наличия фиксирующей нити и несущего слоя TFP-технология вводит в волокнистую заготовку компоненты, которые в последующем уже не выполняют никакой функции. В конкретном плане несущий слой создает трудности при реализации оптимальной последовательности слоев в заготовке и составляет достаточно заметную часть в общем весе, в частности, если несколько волокнистых заготовок помещены друг на друга. Несмотря на то, что несущий слой тоже может быть сформирован с помощью армирующей ткани, например из стеклянных или углеродных волокон, в этом случае, по меньшей мере, некоторые из армирующих волокон имеют ориентацию, не соответствующую направлению нагрузки. Кроме того, армирующая ткань из-за проникновения швейной нити во время TFP-процесса повреждается, а следовательно, характеристики материала могут ухудшаться.

В патенте РФ №2401740 описан способ изготовления одно- или многослойной волокнистой заготовки согласно TFP-технологии. Способ включает в себя следующие операции: укладка и закрепление волокнистых прядей на гибком и эластичном основании, в частности, эластомерном основании посредством фиксирующей нити, пропущенной через швейную головку, и снятие сформированной волокнистой заготовки с основания.

В патенте ЕР 1907195 В1 описано, что между несущей основой и волокнистой преформой помещают разделительный слой. Наличие разделительного слоя облегчает удаление подложки после изготовления преформы. В описании также указано, что фиксирующие нити плавятся при нагреве, который осуществляют перед этапом пропитки и сшивания.

В патенте RU 2406607 указано, что в качестве разделительного слоя между слоями преформы и несущей основой используется неприлипающий материал - тонкослойная политетрафторэлитеновая пленка.

В заявке US 2005/0164578 описан полупродукт для композиционного материала - заготовки, который имеет по меньшей мере один слой из многослойного нетканого полотна из армирующих волокон и у которого в, по меньшей мере, один слой встроены волокна, которые стабилизируют преформу, когда ее подвергают воздействию повышенной температуры и которые растворяются в применяемой позже для получения комплексного конструктивного элемента матричной смоле.

В патенте RU 2272051 описаны структуры из армирующих волокон для заготовок - преформ, при этом они содержат эластичные полимерные элементы, которые, например, в виде волокон вносят между армирующими волокнами или которые в качестве швейной нити соединяют армирующие волокна друг с другом. Гибкие полимерные элементы, входящие в том числе в состав подложек, состоят из материала, растворимого в отверждаемом матричном материале.

В патенте US 7942993, выбранным в качестве прототипа, предложен способ, с помощью которого можно легко по TFP-технологии изготавливать заготовки из многослойного адаптированного волокна любой толщины без вмешательства фиксирующих волокон или промежуточных слоев. С этой целью по изобретению армирующие волокна пришивают к опоре фиксирующими нитями, в результате чего образуется заданная структура преформы из армирующего волокна. Затем фиксирующие нити в волокнистой заготовке химически растворяют или термически расплавляют и тем самым происходит отделение преформы от несущей тканой основы.

Во всех представленных в разделе «уровень техники», включая прототип, технических решениях существует опасность повреждения и изменения конфигурации волокнистой структуры при отделении пришитого основания. Кроме того, это может привести к нарушению целостности слоев и их расслоению.

Технической задачей изобретения является устранение возможности повреждения и изменения конфигурации волокнистой структуры преформы при отделении пришитого основания.

Технический результат достигается применением водорастворимой подложки при нашивке преформ изделий из ПКМ по TFP-технологии. В качестве материала подложки предлагается использовать флизелин (или другой материал на водорастворимой основе), где в качестве носителя-стабилизатора применяют 100% поливиниловый спирт.

Флизелин- бумагоподобный нетканый материал, белого цвета на основе модифицированных целлюлозных волокон. За счет модификации волокон и их химической сшивки при формовке конечного продукта флизелины обладают большей, чем обычные целлюлозные волокна, прочностью на разрыв, стойкостью к истиранию, жесткостью и негорючестью. В рассматриваемом случае для придания требуемых свойств материалу изготовитель обработал матрицу (аппретирование) 100% поливиниловым спиртом (ПВС, международное название: PVA - искусственный, водорастворимый, термопластичный полимер). Под водорастворимым флизелином на основе поливинилового спирта в заявке понимается вышеобозначенный материал.

Преимуществом в использовании флизелина в заявляемой функции является, кроме всего прочего, его бюджетная стоимость. Авторы заявки с практически одинаковым результатом экспериментировали с целым рядом водорастворимых материалов на основе поливинилового спирта отечественных и зарубежных производителей, в основном типа Н и G (фирмы Allbiz, Westtext, Aurora и др.).

Сущность заявляемого изобретения состоит в следующем. Согласно рекомендациям производителей водорастворимые флизелины (поверхностная плотность порядка 35-40 г/м2) растворяются при t воды = 20-40°С за 0,5-3 и более минут. Однако, вследствие того, что подобные материалы никогда ранее не применялись при изготовлении преформ для изделий из композиционных материалов, авторами был выполнен ряд экспериментов, в результате которых был выбран оптимальный режим процесса вымывания подложки из волокнистой структуры преформы.

Авторы изобретения процесс вымывания подложек из преформ, изготовленных по TFP-технологии с использованием в качестве армирующих волокон углеродные волокна в виде ровинга, а в качестве фиксирующих нитей - арамидные волокна, материал водорастворимой подложки на основе PVA - флизелин реализовали на практике пошагово следующим образом:

- нагревают воду до заданной температуры;

- помещают преформы с подложкой в отдельные герметичные емкости для вымывания;

- заливают каждую из емкостей с образцами по отдельности водой, нагретой до указанной температуры до полного заполнения;

- выдерживают преформы в емкостях в течение определенного времени до полного растворения подложки;

- извлекают щипцами образцы преформ из емкостей и тщательно промывают под проточной водой;

- выдерживают при первоначальной температуре до полного высыхания.

Проведенные опыты показали, что качественное и тщательное вымывание преформы оказывает положительное влияние на прочностные характеристики конечных изделий.

Авторами исследовались различные режимы процесса вымывания подложки из флизелина (фирма Aurora (Китай), 40 г/м2, мк) из образцов преформ водой: от комнатной температуры до кипения (табл. 1).

Для исследований были изготовлены по TFP-технологии опытные образцы преформ лопаток компрессора газотурбинного двигателя (ГТД) с подложкой в количестве 25 шт.: по 5 шт преформ для каждого из пяти режимов вымывания. Номинальный вес преформы лопатки компрессора без подложки составлял 33 г. Также все опытные образцы преформ имели идентичные характеристики и параметры нашивки при их изготовлении: размер, схему укладки, плотность укладки (преимущественно 2,85-3,00 мм) и шаг прошивки (преимущественно 7,0-10,0 мм). После изготовления опытные образцы были вырезаны с общей подложки по отдельности с одним и тем же припуском в 10 мм, чтобы обеспечить одинаковое содержание материала подложки во всех образцах.

Определяемыми показателями в исследованиях являлись время растворения подложки, качество растворения и качество вымывания.

Время растворения подложки измерялось с момента контакта преформы с водой до полного растворения подложки.

Качество растворения подложки определялось визуальным способом: процесс считался качественным, если подложка растворилась полностью, без следов, без изменения цвета воды, образования каких-либо комков и т.д.

Критериями оценки качества вымывания являлись наличие/отсутствие визуально-диагностируемых дефектов преформы после вымывания (повреждения волокон и их рассыпание, мягкость/жесткость преформы), а также контроль массы преформы. Жесткость образцов преформ свидетельствует о неподходящих параметрах растворения и недостаточно тщательном вымывании. Растворившиеся частицы подложки при некачественном вымывании въедаются в текстильную структуру преформы и «склеивают» ее (делают жесткой) при высыхании.

Результаты исследований приведены в таблицах 2-6.

Т.о. анализ полученных данных показывает, что оптимальными параметрами процесса растворения подложки из преформы являются:

температура воды - 80°С, время растворения подложки - не более 20 сек; и время выдержки - 3 минуты. Затем при температуре 80°С проводят сушку преформы до полного высыхания.

При этом необходимо отметить, что к преимуществам заявленного решения поставленной технической задачи при изготовлении преформ по технологии направленной укладки волокна за счет использования для подложек водорастворимого флизелина на основе PVA, относится следующее:

- проведение процесса отделения пришитого основания в «мягких» условиях водной среды минимизирует опасность повреждения волокнистой структуры преформы;

- сохранение цельной, взаимосвязанной структуры преформы изделий за счет того, что фиксирующие нити остаются в преформе, не растворяясь в воде;

- высокая стабилизация вышивки без смещения траектории нашивки, обеспечивающая получение преформы с конечными размерами будущего изделия.

1. Способ изготовления преформы на основе водорастворимой подложки для лопаток компрессора, состоящий в автоматизированной нашивке армирующего волокна на подложку по TFP-технологии и последующего удаления элементов подложки, отличающийся тем, что в качестве материала подложки используют водорастворимый материал на основе поливинилового спирта - флизелин, а процесс удаления элементов подложки проводят при контроле качества образца преформы до полного растворения и вымывания водой частиц флизелина.

2. Способ по п. 1, отличающийся тем, что процесс удаления подложки проводят в герметичной емкости при первоначальной температуре 80°С и выдержке преформы в течение 3-х минут.

3. Способ по п. 2, отличающийся тем, что после удаления подложки преформу промывают проточной водой и затем выдерживают при температуре 80°С до полного высыхания.



 

Похожие патенты:

Изобретение относится к области изготовления преформ изделий из полимерных композиционных материалов (ПКМ) - заготовок на основе армирующих волокон. Изобретение может быть использовано в базовых отраслях промышленности, таких как авиастроение, космическая отрасль, энергетика, судо- и автомобилестроение для производства деталей и их компонентов из ПКМ, которые могут выдерживать экстремальные механические нагрузки.

Изобретение относится к способу формирования 3D каркаса многомерно армированного углеродного композиционного материала путем набора и выкладки стержней из углеродного волокна.

Изобретение относится к способу изготовления лопатки (100) газотурбинного двигателя из композиционного материала, содержащей волокнистое усиление, уплотненное матрицей.

Изобретение относится к способу изготовления объемно армированного композиционного материала. Техническим результатом является повышение физико-механических свойств изделий и снижение трудоемкости их изготовления.
Изобретение относится к способу изготовления объемно армированного композиционного материала. Техническим результатом является улучшение биосовместимости, сохранение высоких удельных характеристик, повышение температуры эксплуатации до 250°С, снижение длительности и энергоемкости изготовления изделий.

Изобретение относится к устройству уплотнения и к способу изготовления композитной лопатки турбомашины, а также к композитной лопатке турбомашины. Устройство уплотнения содержит пресс-форму, ограничивающую открытое вверх гнездо, предназначенное для размещения в нем предварительно вырезанной тканой заготовки, и подвижное в вертикальном направлении приспособление для уплотнения, образующее вместе с пресс-формой устройство уплотнения указанной заготовки, предварительно помещенной в гнездо.

Изобретение относится к волокнистой структуре, содержащей заготовочный участок, выполненный в виде единой детали посредством трехмерного тканья между первым множеством слоев нитей и вторым множеством слоев нитей, при этом заготовочный участок соответствует всей или части заготовки волокнистого усиления для детали из композиционного материала.

Изобретение относится к волокнистой заготовке для полой лопатки газотурбинного двигателя, к такой полой лопатке и способу изготовления такой полой лопатки. Изобретение также относится к газотурбинному двигателю и летательному аппарату, содержащим такую полую лопатку.

Изобретение относится к способу изготовления изогнутой сотовой структуры (10). Способ включает в себя выполнение следующих операций:- создание растягиваемой волоконной структуры (100) путем многослойной прошивки множества слоев нитей основы и множества слоев нитей утка; создаваемая волоконная структура содержит несоединенные зоны, проходящие по всей глубине волоконной структуры, разделенные друг от друга соединяющими зонами, которые соединяют множество слоев нитей утка.

Изобретение относится к области шумозащитных панелей и касается способа изготовления керамической шумозащитной панели изогнутой формы. Способ включает следующие операции: пропитку волоконной структуры, определяющей сотовую структуру, смолой-прекурсором керамики; полимеризацию смолы-прекурсора керамики при удержании волоконной структуры на устройстве, форма которого соответствует изогнутой форме окончательно получаемой сотовой структуры; прикрепление к сотовой структуре первой и второй обшивок; каждая из обшивок представляет собой волоконную структуру, пропитанную смолой-прекурсором керамики, и обе обшивки прикрепляются к указанной сотовой структуре до или после полимеризации смолы указанных обшивок; пиролизацию собранного узла, включающего в себя сотовую структуру с первой и второй обшивками; и уплотнение указанного узла посредством химической инфильтрации в паровой фазе.

Изобретение относится к способу получения трехмерных изделий сложной формы. Техническим результатом является наибольшее соответствие полученного изделия структуре нативной трабекулярной кости.

Способ изготовления каскадной решетчатой панели для реверсора тяги реактивного двигателя включает обеспечение наличия множества термопластических лопаток и множества термопластических силовых планок.
Группа изобретений относится к способу изготовления множества полых усиливающих конструкций (3) для панелей (Р) или авиационных конструкций и к панели, изготовленной способом по изобретению.

Изобретение относится к устройству для формирования консолидированной конструкции. Техническим результатом является более быстрое создание термопластичной сэндвичевой конструкции за одно целое, без использования крепежных элементов.

Изобретение относится к приспособлению для вымывания песчано-полимерной оправки из корпуса ракетного двигателя. Техническим результатом является снижение температуры массива материала теплозащитного покрытия корпуса РДТТ в районе фланцев в процессе вымывания формующей части оправки с помощью пара.

Изобретение относится к способу изготовления рабочего колеса из композитного материала и к рабочему колесу. Техническим результатом является повышение эрозионной стойкости колеса.

Изобретение относится к области получения изделий из полимерного открытопористого материала (поропласта). Детали из поропласта могут быть использованы как функциональные элементы, например фильтроэлементы фильтрующих устройств, матрицы-носители катализаторов, теплоизоляция.

Изобретение относится к способу изготовления конструктивного компонента из армированного волокнами композиционного материала, формовочному стержню для изготовления такого конструктивного компонента и конструктивному компоненту, имеющему стрингер, изготовленный с использованием такого стержня и/или таким способом.

Изобретение относится к устройству для формовки тонкостенной пластмассовой оболочки, с использованием ящика с порошком и опоки. .
Наверх