Теплозащитное покрытие корпуса высокоскоростного летательного аппарата

Изобретение относится к области ракетной и космической техники, а более конкретно к теплозащитным покрытиям. Теплозащитное покрытие (ТЗП) корпуса высокоскоростного летательного аппарата выполнено из теплоизоляционных и теплозащитного материалов с устройством обеспечения прочностных характеристик корпуса в виде дренажных отверстий. Теплоизоляционные слои выполнены в виде разделяющих матов с газопроницаемыми оболочками, а также матов с газопроницаемыми оболочками, перекрывающих дренажные отверстия. Отверстия выполнены с расходом газа через них. Достигается обеспечение теплозащитой высокоскоростных летательных аппаратов. 1 ил.

 

Изобретение относится к области ракетной и космической техники.

Особенностью современных высокоскоростных летательных аппаратов (ВЛА) является траектория, содержащая участок выведения на ускорителе или ракете, участок снижения в атмосфере, и конечный участок полета, когда за короткий временной промежуток происходит значительное снижение высоты.

При осуществлении такого полета возникают перепады давлений на теплозащитном слое за счет того, что на наружной поверхности корпуса ВЛА устанавливается высокое давление, которое воспринимается теплозащитным слоем теплозащитного покрытия (ТЗП), а в слое теплоизоляции устанавливается пониженное давление, близкое к давлению в задонной части корпуса.

Данные перепады давлений могут превышать допустимые конструкцией аппарата значения, что не позволяет обеспечить работоспособность корпуса ВЛА. Это особенно критично на конечном участке полета, где возникновение опасных значений по перепаду наиболее вероятно.

Известна система теплозащиты космического аппарата, содержащая экранно-вакуумную тепловую изоляцию (ЭВТИ) с устройством обеспечения ее прочностных и теплофизических характеристик в виде сквозных дренажных отверстий, равномерно расположенных по поверхности изоляции, сообщающих межслойные объемы изоляции и объем газовой среды под изоляцией между собой и с наружной средой. Над дренажными отверстиями с зазорами относительно ЭВТИ установлены теплоотражательные экраны (патент RU 2360849 С2).

Такая система не может быть применена для ВЛА, поскольку она предназначена для космических аппаратов, выводимых ракетой-носителем в космическое пространство. К задачам данной системы теплозащиты не относится обеспечение прочностных характеристик аппарата при воздействии высоких рабочих давлений от воздушного потока.

Известен способ регулирования аэродинамических нагрузок, действующих на корпус летательного аппарата, включающий изменение давления газовой среды внутри замкнутого объема корпуса по отношению к давлению на его поверхности путем истечения газовой среды в атмосферу при воздействии аэродинамического потока (патенты RU 2145563 C1, RU 2145564 С1).

Данное изобретение направлено на выравнивание давления между отсеком аппарата и внешней средой, что не обеспечивает герметичности внутреннего пространства и не подразумевает обеспечения теплозащиты ВЛА.

Технической задачей предлагаемого изобретения является обеспечение тепловых и прочностных режимов корпуса ВЛА.

Решением поставленной задачи является ТЗП корпуса ВЛА, выполненное из теплоизоляционных и теплозащитного материалов, с устройством обеспечения прочностных характеристик корпуса в виде дренажных отверстий, отличающееся тем, что теплоизоляционные слои выполнены в виде матов с газопроницаемыми оболочками, перекрывающих дренажные отверстия, выполненные с объемным расходом газа через них, обеспечивающим заданный темп изменения перепада давления в ТЗП, и разделительных матов с газонепроницаемыми оболочками для устранения перетока горячего газа внутри слоя теплоизоляции.

Для пояснения изобретения на фиг. 1 представлен схематический вид пакета ТЗП, где 1 - внутренняя (силовая) оболочка корпуса, 2 - маты теплоизоляции с газопроницаемой оболочкой, 3 - теплозащитный слой, 4 - дренажные отверстия, 5 - маты теплоизоляции с газонепроницаемой оболочкой.

ТЗП ВЛА является одним из его критичных элементов. Выполнение требований к летно-техническим характеристикам требует синтеза различных подходов к проектированию пакетов тепловой защиты, обеспечивающие восприятие необходимых уровней теплового воздействия и высоких рабочие давлений с сохранением работоспособности конструкции.

В качестве теплозащитного слоя (поз. 3) используют теплостойкий конструкционный материал.

Совокупность характеристик теплозащитного материала и исполнение ТЗП в виде сложнопрофильной единой конструкции, позволяют воспринимать высокие рабочие давления набегающего потока, сохранять геометрические параметры без изменения, обеспечить работоспособность и стойкость элементов теплозащитного корпуса к внешним воздействующим факторам.

Полет ВЛА характеризуется режимами, при которых наблюдается значительное изменение внешнего давления за короткие промежутки времени Давление в теплоизоляции, выполненной в виде единого слоя, близко к давлению в задонной части корпуса и не претерпевает значительных изменений. Поскольку материал теплозащитного слоя (поз. 3), в том числе с нанесенным антиокислительным покрытием, обладает низкой газопроницаемостью, на нем возникают перепады давления, превышающие допустимые значения. Для устранения данного эффекта, в теплозащитное слое выполняют дренажные отверстия малого диаметра (поз. 4) Предполагается, что при этом давление в слое теплоизоляции будет находиться в диапазоне от статического (атмосферного) до давления не поверхности.

Размер и количество отверстий подбирается расчетным образом, исходя из темпа роста давления на участке с наибольшим градиентом давления. Критерием выбора является время, за которое разница давлений достигает требуемого уровня. Все указанные параметры связаны между собой соотношениями:

Q=CNWSотв, P1V1k=P2V2k,

Q [м3/с] - объемный расход газа через отверстие;

С - коэффициент истечения;

N - количество отверстий;

W [м/с] - скорость истечения газа через отверстие;

Sотв2] _ площадь поперечного сечения отверстия;

ρ [кг/м3] - плотность газа в источнике;

Р1 [Па] - абсолютное давление источника;

Р2 [Па] - абсолютное давление приемника;

V13] - суммарный объем газа проходящего через отверстие;

V23] - объем, занятый газом поступившим через отверстие;

k - показатель адиабаты;

Численное решение системы представленных уравнений определяет зависимость между размерами и количеством отверстий в теплозащитном слое и временем, за которое разница давлений достигает требуемого уровня.

Для устранения перепада давлений между слоем теплоизоляции и задонной областью корпуса ВЛА вследствие выполнения дренажных отверстий, теплоизоляцию выполняют в виде поочередно расположенных матов с газопроницаемыми и газонепроницаемыми оболочками. Маты с газопроницаемыми оболочками перекрывают дренажные отверстия и в них происходит выравнивание перепада давлений между наружным и внутренним слоями ТЗП до допустимых значений. Маты теплоизоляции с газонепроницаемыми теплостойкими оболочками (например, фольга, плотная ткань и другие) устанавливают также с целью устранения перетока горячего газа в задонную область аппарата.

В случае, если маты теплоизоляции с газопроницаемыми оболочками включают экраны из фольги или другие газонепроницаемые конструкционные элементы, дренажные отверстия выполняют сквозными через теплозащитный слой и теплоизоляционный слой.

Использование жесткой конструкции теплозащитного слоя, за счет чего исчезает необходимость восприятия теплоизоляцией нагрузок, приходящих с теплозащитного слоя, и устранение перетока горячего газа внутри слоя теплоизоляции за счет установки матов с газонепроницаемыми оболочками, позволяет уменьшить плотность теплоизоляционного слоя. Как следствие, уменьшается вес ТЗП и ВЛА в целом.

Предложенный способ обеспечения заданных перепадов давлений позволяет облегчить теплозащитный слой (не нужно увеличивать его толщину), что также приводит к уменьшению веса ТЗП.

Предлагаемое ТЗП корпуса высокоскоростного летательного аппарата или возвращаемого космического аппарата позволяет обеспечить заданные тепловые режимы и прочностные характеристики ВЛА, увеличить надежность и обеспечить работоспособность корпуса ВЛА без увеличения толщины пакета ТЗП и без введения дополнительных сложных систем для обеспечения заданных перепадов давлений. Это позволяет значительно расширить возможности ВЛА по выдерживанию траекторий со значительным перепадом давлений и улучшить его летно-технические характеристики.

Теплозащитное покрытие (ТЗП) корпуса высокоскоростного летательного аппарата, выполненное из теплоизоляционных и теплозащитного материалов, с устройством обеспечения прочностных характеристик корпуса в виде дренажных отверстий, отличающееся тем, что теплоизоляционные слои выполнены в виде матов с газопроницаемыми оболочками, перекрывающих дренажные отверстия, выполненные с объемным расходом газа через них, обеспечивающим заданный темп изменения перепада давления в ТЗП, и разделительных матов с газонепроницаемыми оболочками для устранения перетока горячего газа внутри слоя теплоизоляции.



 

Похожие патенты:

Изобретение относится к конструкции корпусов скоростных летательных аппаратов (ЛА), преимущественно малых калибров. Для обечайки с длиной образующей L и с гладкой несущей стенкой толщиной δ корпуса цилиндрической, конической или биконической формы - в стенке обечайки с одного или двух торцов осесимметрично выполнены глухие отверстия диаметром d и длиной l1, l2 таким образом, чтобы δ=d+2(0,5-4,0) мм, L=(l1+l2)+(2-20) мм.

Изобретение относится к области защиты от молний. Молниеотвод (200) установлен на защищаемой конструкции (100) и содержит поверхностное покрытие, несколько электропроводящих элементов (204), распределенных по конструкции, защитное покрытие (205).
Изобретение относится к ракетно-космической технике. Способ охлаждения корпуса движущейся ракеты реализуется путем формирования сужающегося в направлении ее движения вихревого воздушного потока, раскручивающего от потока воздуха, создаваемого закрепленными на обруче лопастями.

Изобретение относится к термостойким системам теплозащиты поверхности гиперзвуковых летательных и возвращаемых космических аппаратов. Термостойкая система теплозащиты состоит из теплоизоляционного и теплозащитного слоя, включающего композиты с керамической матрицей, армированной теплостойкими волокнами и содержащей сублимирующее твердое вещество.

Изобретение относится к физической оптике и лазерной технике ракет, в частности к способу противодействия ракет лазерным когерентным локаторам. .

Изобретение относится к области баллистики, в частности к способам обеспечения высокоэффективной защиты элементов конструкций ракетно-космической техники от воздействия высокоинтенсивных объемных источников тепла и высокоскоростных кинетических ударников с помощью специального покрытия.

Изобретение относится к области ракетной техники, в частности к устройствам защиты корпуса ракеты от нагрева. .

Изобретение относится к средствам защиты от лазерного оружия аэрокосмических систем и хранилищ углеводородного горючего. .

Изобретение относится к ракетной технике и может быть использовано в малогабаритных ракетных выстрелах, а также в артиллерии. .

Изобретение относится к области вооружения и может быть использовано в малогабаритных ракетах и артиллерийских снарядах. .

Группа изобретений относится, преимущественно к средствам обеспечения внекорабельной деятельности (ВКД). Устройство содержит режущий инструмент (не показан) и шаблон в виде двух параллельных направляющих (1, 2) уголкового профиля.

Изобретение относится к летательному аппарату, а в частности к сопряжению между внешней обшивкой и панелью стабилизатора или крыла летательного аппарата. Летательный аппарат содержит крылья и стабилизатор, содержащие кессонную часть, содержащую лонжероны и внешнюю обшивку, соединенную с указанными лонжеронами.

Раскрыта система теплозащиты с панелью, размещенной на расстоянии. Система содержит сэндвичевую панель, содержащую: первый облицовочный лист из керамического матричного композита и второй облицовочный лист из керамического матричного композита.

Группа изобретений относится к области защиты конструкций космических аппаратов (КА) от внешних факторов космоса. Предлагаемое устройство содержит экран и удерживающее приспособление.

Изобретение относится к космической технике и касается способа сборки внутренней теплозвукоизоляции головного обтекателя ракеты-носителя. Способ включает сборку узла последовательным нанесением клеевым методом на внутреннюю поверхность головного обтекателя пенополиуретана на основе сложного полиэфира П-2200, облицовочной ткани АЗТс, на которую наклеивают алюминиевую фольгу, образуя трехслойные пакеты, которые на цилиндрической части головного обтекателя устанавливают одной толщины, а на конической части головного обтекателя пакеты устанавливают в шахматном порядке переменной толщины с линейными размерами каждой стороны пакетов большими или равными половине длины резонансной звуковой волны λ/2.
Изобретение относится к космическим технологиям, используемым при освоении внеземной (инопланетной) среды. Космическую (преимущественно обитаемую) станцию, которую размещают в затенённой области кратера близ полюса Меркурия, теплоизолируют графитовым материалом.

Группа изобретений относится, главным образом, к теплозащищённым передним кромкам крыльев аэрокосмических транспортных средств. Структура передней кромки включает в себя множество съемных модулей, прикрепляемых, например, к переднему лонжерону крыла.

Система для тепловой защиты сверхвысокоскоростного летательного аппарата содержит источник (200) газа-холода, расположенный внутри герметичной полости, и приводное устройство (100) источника газа-холода для преобразования источника (200) газа-холода в газ высокого давления.

Изобретение относится к теплозащите преимущественно гиперзвуковых летательных аппаратов. Способ заключается в разбивке теплозащитного покрытия на плитки и их закреплении на силовом каркасе аэродинамической поверхности (АП).

Изобретение относится к тепловой защите объектов космической и/или криогенной техники, а также может быть использовано в других отраслях народного хозяйства. Материал состоит из чередующихся слоев экранов металлизированной теплоотражающей перфорированной пленки и сепарационной прокладки.

Устройство для тепловой защиты летательного аппарата в полете содержит компрессор, форсунки, бак-емкость, источник напряжения, автомат для одновременного включения компрессора и источника напряжения, защищаемый элемент конструкции летательного аппарата, представляющий собой токопроводящую подложку с нанесенным на нее восстанавливаемым в полете теплозащитным покрытием.
Наверх