Рентгенопрозрачная труба для анализа многофазных потоков

Использование: для анализа многофазного потока. Сущность изобретения заключается в том, что рентгенопрозрачная труба для анализа многофазного потока путем пропускания через многофазный поток рентгеновского или гамма излучения, выполненная из рентгенопрозрачного материала, при этом сечение трубы для прохождения рентгеновского или гамма излучения выполнено вытянутой формы, причем прямые (вытянутые) части поверхности трубы выполнены по образующим конуса, вершиной которого является источник излучения, а основанием - изображение трубы на приемнике излучения, скругленные части поверхности трубы выполнены по окружностям, которые тангенциально пересекаются с прямыми (вытянутыми) частями трубы. Технический результат: повышение точности измерения расхода многофазного потока. 4 ил.

 

Изобретение относится к области измерения параметров потока с помощью рентгеновского или гамма-излучения, а именно к устройствам для проведения рентгеновской или гамма интроскопии жидких или газообразных потоков или их смеси, и может быть использовано в информационно-измерительных системах нефтедобывающей, нефтеперерабатывающей промышленности.

Наиболее распространенными в системах транспортировки жидких и газообразных веществ являются трубопроводы круглого сечения, так как такое сечение является идеальным для транспортировки продуктов под высоким давлением из-за устойчивости стенок трубы к деформациям.

Известна рентгенопрозрачная труба для анализа многофазного потока рентгеновским или гамма излучением, представляющая собой трубу круглого сечения из рентгенопрозрачного материала [Патент на изобретение RU №2559119, кл. G01N 23/06, G01N 23/207, опубл. 10.08.2015].

Наиболее близкой к заявляемому объекту является рентгенопрозрачная труба для анализа многофазного потока рентгеновским или гамма излучением, представляющая собой трубу с круглым сечением, выполненную из рентгенопрозрачного материала [Патент на полезную модель RU №188348, кл. G01N 23/06, опубл. 09.04.2019].

Недостаток вышеприведенных рентгенопрозрачных труб круглого сечения заключается в том, что интроскопия многофазного потока, протекающего по трубе круглого сечения, приводит к неудовлетворительному качеству измерения расхода многофазного потока и значительной погрешности измерения вследствие неоднородности толщины слоя измеряемого многофазного потока, пройденного излучением, и исследования излучением только сечения трубы, близкого к ее диаметру.

Изобретение направлено на повышение точности измерения расхода многофазного потока за счет более однородного распределения толщины слоя исследуемого многофазного потока, через который проходит излучение при любой поперечной координате трубы.

Это достигается тем, что в рентгенопрозрачной трубе для анализа многофазного потока путем пропускания через нее рентгеновского или гамма излучения, выполненной из рентгенопрозрачного материала, согласно изобретению сечение трубы для прохождения рентгеновского или гамма излучения выполнено вытянутой формы, при этом прямые (вытянутые) части поверхности трубы выполнены по образующим конуса, вершиной которого является источник излучения, а основанием - изображение трубы на приемнике излучения, скругленные части поверхности трубы выполнены по окружностям, которые тангенциально пересекаются с прямыми (вытянутыми) частями трубы.

На фиг. 1 изображена предлагаемая рентгенопрозрачная труба для анализа многофазного потока, продольный разрез; на фиг. 2 - разрез А-А на фиг 1; на фиг. 3 схематично изображена установка для интроскопии с применением предлагаемой рентгенопрозрачной трубы с сечением вытянутой формы; на фиг. 4 приведена для сравнения схематично изображенная установка для интроскопии с применением рентгенопрозрачной трубы круглого сечения по наиболее близкому аналогу.

Рентгенопрозрачная труба для анализа многофазного потока представляет собой трубу 1, выполненную из рентгенопрозрачного материала для проведения интроскопии потока с помощью рентгеновского или гамма излучения без значительного поглощения излучения материалом трубы. Сечение трубы выполнено вытянутой формы, при этом прямые (вытянутые) части 2 поверхности трубы 1 выполнены по образующим конуса 3, вершиной которого является источник излучения 4, а основанием - изображение 5 трубы на приемнике излучения 6. Скругленные части 7 поверхности трубы 1 выполнены по окружностям, которые тангенциально пересекаются с прямыми (вытянутыми) частями 2 трубы 1.

Рентгенопрозрачная труба работает следующим образом.

Исследуемый многофазный поток протекает по рентгенопрозрачной трубе 1, которую просвечивают рентгеновским или гамма излучением из источника 4, схематично показанным в виде конуса 3. Излучение проходит через рентгенопрозрачную трубу 1 с исследуемым многофазным потоком, проецируется на приемнике излучения 6, где формирует изображение 5 или последовательность изображений трубы 1 с исследуемым многофазным потоком. Полученные изображения анализируются компьютерной вычислительной системой.

Как видно из фиг. 3, предлагаемая рентгенопрозрачная труба обеспечивает близкое к однородному распределение толщины слоя исследуемого многофазного потока по сечению трубы: толщина слоя потока, прилегающего к стенке трубы, незначительно отличается от толщины слоя потока в центральной части трубы. Таким образом, проведение процедуры интроскопии рентгеновским или гамма излучением многофазного потока, протекающего по предлагаемой рентгенопрозрачной трубе, позволит обеспечить более однородное распределение толщины исследуемого потока, через который проходит излучение при разной поперечной координате трубы и, следовательно, более однородную проекцию исследуемого потока на приемник излучения, что дает возможность повысить точность измерения расхода многофазного потока.

Из фиг. 4 видно, что в рентгенопрозрачной трубе по наиболее близкому аналогу, имеющей круглое сечение, по центру трубы толщина слоя содержимого трубы равна ее диаметру, а у стенки трубы - снижается до нуля. Очевидно, что различная толщина слоя исследуемого содержимого трубы, через которое проходит излучение при разной поперечной координате трубы, сформирует неоднородную проекцию исследуемого содержимого на приемник излучения и приведет к увеличению погрешности измерения и, следовательно, к неудовлетворительному качеству измерения.

Таким образом, использование предлагаемой рентгенопрозрачной трубы обеспечит снижение неоднородности толщины внутреннего объема, пройденного излучением, от поперечной координаты, что позволит повысить точность измерения расхода многофазного потока. При этом сохраняется удовлетворительная устойчивость стенок трубы к высокому давлению внутри трубы, так как в конструкции отсутствуют острые углы или малые радиусы скругления.

Рентгенопрозрачная труба для анализа многофазного потока путем пропускания через многофазный поток рентгеновского или гамма излучения, выполненная из рентгенопрозрачного материала, отличающаяся тем, что сечение трубы для прохождения рентгеновского или гамма излучения выполнено вытянутой формы, при этом прямые (вытянутые) части поверхности трубы выполнены по образующим конуса, вершиной которого является источник излучения, а основанием - изображение трубы на приемнике излучения, скругленные части поверхности трубы выполнены по окружностям, которые тангенциально пересекаются с прямыми (вытянутыми) частями трубы.



 

Похожие патенты:

Изобретение относится к области неразрушающего контроля изделий методом рентгеновской компьютерной томографии и может быть использовано в авиационной, нефтегазовой, атомной промышленности, в отраслях машиностроения.

Использование: для рентгеновского контроля деталей. Сущность изобретения заключается в том, что потолочное устройство для рентгеновского контроля деталей содержит рентгеновскую трубку, кожух-держатель, выполненный с возможностью закрепления на нем рентгеновской трубки, манипулятор с элементами перемещения в вертикальной и горизонтальной плоскостях, электропривод осевого поворота кожуха-держателя с рентгеновской трубкой, автоматизированное управление с помощью выносного пульта управления, при этом устройство снабжено конструкцией вертикально-осевых перемещений кожуха-держателя с рентгеновской трубкой, состоящей из электропривода четырех закольцованных валиков-катушек со стальными лентами для вертикального перемещения кожуха-держателя с рентгеновской трубкой во всем диапазоне изменения высоты, позволяющей полипозиционно перемещать рентгеновскую трубку к изделию в «полетном» режиме и предусматривающей последовательные осевые повороты кожуха-держателя двумя электроприводами, при этом кожух-держатель с рентгеновской трубкой поворачивается относительно вертикальной оси на 180° и горизонтальной оси на 90° для выставления фокусного расстояния и угла просвечивания.

Использование: для определения емкости хранения кислорода в материалах на основе оксидов металлов. Сущность изобретения заключается в том, что проводят облучение исследуемого образца рентгеновским излучением с энергией, определённой при калибровке с реперными образцами, при которой разница коэффициентов поглощения между восстановленной и окисленной формами реперных образцов максимальная, регистрируют коэффициенты поглощения в окислительной и восстановительной среде, определяют долю разницы этих коэффициентов от разницы коэффициентов поглощения, измеренных для реперных образцов, и вычисляют ёмкость хранения кислорода по заданной формуле.

Группа изобретений относится к средствам рентгеновской визуализации. Устройство рентгеновской визуализации содержит систему рентгеновского источника для обеспечения рентгеновского пучка, по меньшей мере одну решетку, и линейный детектор с сенсорными линиями, причем каждая из сенсорных линий снабжена сенсорными элементами, устройство рентгеновской визуализации выполнено с возможностью перемещения линейного детектора и подлежащего визуализации объекта относительно друг друга, так что в соответствии с участками рентгеновского пучка интерференционные картины являются обнаруживаемыми в соответствующих различных относительных положениях линейного детектора и объекта для реконструкции изображения объекта, причем по меньшей мере одна решетка содержит по меньшей мере один первый сегмент и по меньшей мере один второй сегмент, расположенные рядом с друг другом поочередно в направлении, перпендикулярном направлению линейного детектора, причем количество первых сегментов равно количеству сенсорных линий линейного детектора, количество вторых сегментов равно количеству сенсорных линий линейного детектора, устройство рентгеновской визуализации выполнено с возможностью перемещения линейного детектора и по меньшей мере одной решетки относительно друг друга между по меньшей мере первым относительным положением и вторым относительным положением, так что в первом относительном положении участок рентгеновского пучка во время работы проходит через по меньшей мере один первый сегмент и затем поступает на одномерную сенсорную линию для обнаружения, тогда как по меньшей мере один второй сегмент размещен вне участка рентгеновского пучка, так что он проецируется вдоль рентгеновского пучка на область между соседними сенсорными линиями, и что во втором относительном положении участок рентгеновского пучка во время работы проходит через по меньшей мере один второй сегмент и затем поступает на одномерную сенсорную линию для обнаружения, тогда как по меньшей мере один первый сегмент размещен вне участка рентгеновского пучка, так что он проецируется вдоль рентгеновского пучка на область между соседними сенсорными линиями.

Использование: для диагностирования сварных соединений, наплавок и основного тела трубы магистральных газопроводов. Сущность изобретения заключается в том, что проведение радиографического контроля происходит под давлением перекачиваемой среды (без прекращения транспорта природного газа) с использованием совокупности следующих материалов и оборудования: радиографической кассеты длиной не более 300 мм, состоящей из внешнего светонепроницаемого чехла и внутреннего светонепроницаемого чехла, оснащенного усиливающими экранами (металло-флюоресцентные, синеизлучающие, с коэффициентом сокращения экспозиции 70÷150 раз) и рентгеновской пленкой (сенсибилизированная со средним градиентом 3,3; чувствительность (p-1) 800-1200; класс по EN 584-10), уложенной между усиливающими экранами, рентгеновский аппарат постоянного потенциала, с возможностью регулировки анодного напряжения от 250 до 300 кВ, а проявка полученных радиографических снимков осуществляется при температуре t≈5÷7°С.

Изобретение относится к сортировке материалов и может быть использовано при обогащении угля или руды. В частности, предложен способ сортировки материалов, содержащий: обеспечение образца; уменьшение размера образца до 10 сантиметров или меньше; определение минимального поглощения рентгеновского излучения наиболее толстой толщины слоя образца; измерение поглощения рентгеновского излучения кусков образца; идентификацию кусков образца, имеющих поглощение рентгеновского излучения больше, чем минимальное поглощение рентгеновского излучения наиболее толстой толщины слоя; при этом идентификация кусков образца является идентификацией кусков образца, имеющих процентные пропускания рентгеновского излучения, которые уменьшены на 20% или более по сравнению с процентным пропусканием рентгеновского излучения минимального поглощения рентгеновского излучения наиболее толстой толщины слоя образца; отсортировывание от образца кусков образца, имеющих процентные пропускания рентгеновского излучения, которые уменьшены на 20% или более по сравнению с процентным пропусканием рентгеновского излучения минимального поглощения рентгеновского излучения наиболее толстой толщины слоя образца.

Использование: для неразрушающего контроля качества изделий. Сущность изобретения заключается в том, что сканируют поверхность контролируемого объекта датчиками физических полей, измеряют величины сигналов с каждой точки поверхности контролируемого объекта, разбивают диапазон величин сигналов по их значениям на I интервалов, регистрируют измеренные сигналы по принадлежности к соответствующим интервалам, определяют количество измеренных сигналов в каждом интервале, рассчитывают разность количества измеренных сигналов в последующем и предыдущем интервалах по всему диапазону значений величин измеренных сигналов, в качестве порогового значения величины сигнала излучения физического поля выбирают значение из интервала, для которого разность количества измеренных сигналов в данном и предыдущем интервалах меньше нуля, а разность количества измеренных сигналов в данном и последующем интервалах больше нуля.

Использование: для выполнения рентгеновской компьютерной томографии. Сущность изобретения заключается в том, что на объект предварительно наносится система рентгеноконтрастных реперов.

Использование: для формирования рентгеновского флуороскопического изображения. Сущность изобретения заключается в том, что система формирования рентгеновского флуороскопического изображения содержит: контролируемый проход; электронный ускоритель; экранирующее коллиматорное устройство, содержащее экранирующую конструкцию и первый коллиматор для извлечения плоского секторного пучка рентгеновского излучения низкой энергии и второй коллиматор для извлечения плоского секторного пучка рентгеновского излучения высокой энергии, расположенные в пределах экранирующей конструкции; матрицу детекторов низкой энергии, предназначенную для приема пучка рентгеновского излучения из первого коллиматора; и матрицу детекторов высокой энергии, предназначенную для приема пучка рентгеновского излучения из второго коллиматора.

Использование: для контроля сохранности кристаллов драгоценных камней в процессах технологической переработки. Сущность изобретения заключается в том, что выполняют формирование контрольной коллекции кристаллов-имитаторов и их исследование сканированием системой компьютерной томографии с формированием базы данных образов кристаллов-имитаторов.
Наверх