Применение монозамещенных пиразинов, содержащих трифениламиновый заместитель, в качестве мономолекулярных сенсоров для обнаружения нитроароматических соединений

Изобретение относится к применению 2-монозамещенных пиразинов, содержащих трифениламиновый заместитель, общей формулы (I) в качестве мономолекулярных сенсоров для обнаружения нитроароматических соединений. Технический результат: предложено применение соединений общей формулы (I), которые показывают высокую чувствительность и селективность для визуального обнаружения широкого ряда нитроароматических соединений. 2 пр., 3 табл.

 

Применение монозамещенных пиразинов, содержащих трифениламиновый заместитель, в качестве мономолекулярных сенсоров для обнаружения нитроароматических соединений.

Область техники, к которой относится изобретение

Настоящее изобретение относится к области органического синтеза сенсорных материалов и касается 2-монозамещенных пиразинов, обладающих сенсорными свойствами и предназначенных для обнаружения присутствия нитроароматических соединений на поверхностях, в растворах неполярных растворителей, воды и в воздухе в сверхмалых концентрациях на основании изменения оптических свойств – тушения фотолюминесценции – означенного сенсора при контакте с молекулами нитроароматических соединений. Изобретение может быть использовано для создания сенсоров на нитроароматические соединения, которые могут найти применение в силовых структурах (армия, полиция, охранные предприятия, и т.п.), таможенных службах, научно-исследовательских лабораториях, а также в быту и сельском хозяйстве.

Уровень техники:

Способы получения соединения формулы Ia, основанные на реакциях кросс-сочетания в различных условиях (за исключением применения активации под действием микроволнового излучения)

, а также его спектральные характеристики описаны в литературе [C. Liu, Q. Ni. Method for synthesizing 4-diphenylamino-biaryl compounds by Suzuki cross coupling reaction in aqueous phase. // Patent CN 101948366 A, 2011; C. Liu, Q. Ni, J. Qiu. Very Fast, Ligand-Free and Aerobic Protocol for the Synthesis of 4-Aryl-Substituted Triphenylamine Derivatives. // European Journal of Organic Chemistry 2011, Issue 16, P. 3009–3015; C. Liu, Y. Wu, N. Han, J. Qiu. Efficient synthesis of 4-heteroaryl-substituted triphenylamine derivatives via a ligand-free Suzuki reaction. // Applied Organometallic Chemistry 2011, Vol. 25, Issue 12, P. 862–866; C. Liu, X. Rao, X. Song, J. Qiu, Z. Jin. Palladium-catalyzed ligand-free and aqueous Suzuki reaction for the construction of (hetero)aryl-substituted triphenylamine derivatives. // RSC Advances 2013, Vol. 3, Issue 2, P. 526–531; C. Liu, X. Song. Metal ligand-platinum complex and manufacture. // Patent CN 103145763 A, 2013; K. Hoffert, R. J. Durand, S. Gauthier, F. Robin-le Guen, S. Achelle. Synthesis and Photophysical Properties of a Series of Pyrazine-Based Push-Pull Chromophores. // European Journal of Organic Chemistry 2017, Issue 3, P. 523–529].

Сведения о способе синтеза, физико-химических свойствах и области применения 2-[5-(4-дифениламинофенил)-тиофени-2-ил]пиразина (Ib) в научно-технической и патентной литературе отсутствуют.

Наиболее близкими по структуре к соединению Ia является соединение 1 – 5- [4-(дифениламино)фенил]-2-пиразинкарбоновая кислота, а соединению Ib является соединение 2 – 5-{5-[4-(дифениламино)фенил]-тиофен-2-ил}-2-пиразинкарбоновая кислота, в структуре которых отсутствует дополнительная карбоксильная группу [H. Aihara, T. Shono. Preparation of pyrazine carboxylic acid compounds useful for dye-sensitized solar cells. // Patent JP 2015140319 A, 2015].

В литературе имеются данные об использовании соединений 1 и 2 в качестве красителя–сенсибилизатора для цветосенсибилизированных солнечных батарей [H. Aihara, T. Shono. Preparation of pyrazine carboxylic acid compounds useful for dye-sensitized solar cells. // Patent JP 2015140319 A, 2015].

Сведения о других свойствах и областях применения монозамещенных пиразинов, содержащих трифениламиновый заместитель общей формулы (I) отсутствуют.

В литературе описан способ получения соединения (2), который основан на использовании реакции кросс-сочетания по Сузуки 5-(5-бром- тиофен-2-ил)-пиразин-2-карбоновой кислоты (3) с пинаконовым эфиром 4-(дифениламино)фенилбороновой кислоты (4) в 1,4-диоксане в присутствии тетракис(трифенифосфин)палладием(0) и фосфата калия в виде 2М водного раствора при 100° С в течение 24 ч [H. Aihara, T. Shono. Preparation of pyrazine carboxylic acid compounds useful for dye-sensitized solar cells. // Patent JP 2015140319 A, 2015].

Соединения Ia и Ib получены аналогичным способом с использованием промотируемой микроволновым излучением реакции кросс-сочетания по Сузуки из 2-хлорпиразин (5) [или 2-(5-бромтиофен-2-ил)пиразин (6)] (1.0 ммоль) и пинаконового эфира 4-(дифениламино)фенилбороновой кислоты (4) (1.2 ммоль) в 1,4-диоксане при 160°С в течение 30 минут.

Времени 30 минут достаточно для протекания реакции, увеличение времени не приводит к существенному увеличению выхода 2-(4-дифениламинофенил)пиразина (Ia) [или 2-[5-(4-дифениламинофенил)-тиофен-2-ил]пиразина (Ib)], тогда как уменьшение времени менее 30 минут приводит к снижению выхода продукта (I).

Выделение продукта (I) осуществляют путем хроматографического разделения на силикагеле при соотношении в элюенте этилацетат – гексан, 1:4. Увеличение данного соотношения в пользу гексана приведет к необоснованному расходу растворителя, тогда как при увеличении доли этилацетата в элюенте не происходит селективного отделения целевого продукта общей формулы (I) от побочных примесей.

Анализ промежуточных и целевых соединений проводят с использованием ЯМР-спектроскопии (Спектры ЯМР 1Н и 13C измерены на спектрометре Bruker AVANCEIII-500 (500 и 126 МГц) в растворе ДМСО-d6, внутренний стандарт ТМС) и масс-спектры высокого разрешения зарегистрированы на спектрометре Bruker maXis Impact HD (ионизация электрораспылением). Температуры плавления определены на комбинированных столиках Boetius.

Пример 1.

2-Хлорпиразин (5) 115 мг (1.0 ммоль) смешивают с пинаконовым эфиром 4-(дифениламино)фенилбороновой кислоты (4) 446 мг (1.2 ммоль), тетракис(трифенифосфин)палладием(0) 58 мг (0.05 ммоль) и K3PO4 530 мг (2.5 ммоль). Полученную смесь растворяют в 15 мл дегазированного 1,4-диоксана. Полученную смесь облучают микроволновым излучением при 160°С (250 Вт) в течение 30 минут. После этого растворитель отгоняют на роторном испарителе при пониженном давлении, полученный остаток подвергают хроматографическому разделению на колонке с силикагелем (элюент: этилацетат-гексан, 1:4). В результате получают 2-(4-дифениламинофенил)пиразин (Ia) в виде желтого порошка. Выход 259 мг (80 %).

Т.пл. 74–76°С.

Спектр ЯМР 1Н (500 МГц, ДМСО-d6) δ (м.д.): 9.17 (д, J = 1.5 Гц, 1H), 8.65 (дд, J = 2.5, 1.5 Гц, 1H), 8.52 (д, J = 2.5 Гц, 1H), 8.07–8.04 (м, 2H), 7.39–7.34 (м, 4H), 7.16–7.10 (м, 6H), 7.05–7.01 (м, 2H).

Спектр ЯМР 13С (126 МГц, ДМСО-d6) δ (м.д.): 151.1, 148.9, 146.5, 144.1, 142.4, 141.4, 129.7, 128.8, 127.8, 124.9, 124.0, 121.6.

Найдено, m/z: 324.1502 [М+Н]+. C22H18N3. Вычислено, m/z: 324.1495.

Пример 2.

2-(5-Бромтиофен-2-ил)пиразин 241 мг (1.0 ммоль) (6) смешивают с пинаконовым эфиром 4-(дифениламино)фенилбороновой кислоты (4) 446 мг (1.2 ммоль), тетракис(трифенифосфин)палладием(0) 58 мг (0.05 ммоль) и K3PO4 530 мг (2.5 ммоль). Полученную смесь растворяют в 15 мл дегазированного 1,4-диоксана. Полученную смесь облучают микроволновым излучением при 160°С (250 Вт) в течение 30 минут. После этого растворитель отгоняют на роторном испарителе при пониженном давлении, полученный остаток подвергают хроматографическому разделению на колонке с силикагелем (элюент: этилацетат-гексан, 1:4). В результате получают 2-[5-(4-дифениламинофенил)-тиофен-2-ил]пиразин (Ib) в виде желтого порошка. Выход 251 мг (81 %).

Т.пл. 133–134°С.

Спектр ЯМР 1Н (500 МГц, ДМСО-d6) δ (м.д.): 9.24 (д, J = 1.5 Гц, 1H), 8.57 (дд, J = 2.6, 1.5 Гц, 1H), 8.48 (д, J = 2.6 Гц, 1H), 7.97 (д, J = 3.9 Гц, 1H), 7.67–7.62 (м, 2H), 7.51 (д, J = 3.9 Гц, 1H), 7.37–7.31 (м, 4H), 7.13–7.06 (м, 6H), 7.01–6.97 (м, 2H).

Спектр ЯМР 13С (126 МГц, ДМСО-d6) δ (м.д.): 147.6, 147.4, 146.7, 146.5, 144.0, 142.4, 140.4, 139.2, 129.6, 128.0, 127.0, 126.6, 124.5, 124.1, 123.6, 122.6.

Найдено, m/z: 406.1370 [М+Н]+. C26H20N3S. Вычислено, m/z: 406.1372.

Сведения, подтверждающие возможность осуществления изобретения.

Визуальное обнаружение нитроароматических соединений с использованием заявляемого соединения (I).

Для визуального обнаружения нитроароматических соединений с использованием 2-(4-дифениламинофенил)пиразина (Ia) и 2-[5-(4-дифениламинофенил)-тиофен-2-ил]пиразина (Ib) проведено изучение взаимодействия соединения общей формулы I с нитроароматическими соединениями (Таблица 1), которое проводят в растворе сухого дихлорметана в концентрации сенсора 5×10-7 М.

В качестве соединения сравнения используют N,N-дифенил-4-[5- (пиримидин-4-ил)тиофен-2-ил]анилин (II)

,

который имеет оптические характеристики (максимум возбуждения флуоресценции – Ex и максимум испускания флуоресценции – Em), близкие к соединению I (Таблица 2) и для которого описано применение в качестве мономолекулярного оптического сенсора для обнаружения присутствия нитроароматических соединений [E.V. Verbitskiy, A.A. Baranova, K.I. Lugovik, M.Z. Shafikov, K.O. Khokhlov, E.M. Cheprakova, G.L. Rusinov, O.N. Chupakhin, V.N. Charushin. Detection of nitroaromatic explosives by new D–π–A sensing fluorophores on the basis of the pyrimidine scaffold. // Analytical and Bioanalytical Chemistry, 2016, Vol. 408, Issue 15, P. 4093-4101; Вербицкий Е.В., Чепракова Е.М., Баранова А.А., Хохлов К.О., Русинов Г.Л., Чарушин В.Н. Применение 4-(5-R-тиофен-2-ил)пиримидина в качестве мономолекулярного оптического сенсора для обнаружения нитроароматических соединений. // Патент РФ 2616296 C1, Бюллетень изобретений №11, 2017 от 14.04.2017].

Таблица 1. Перечень нитроароматических соединений, которые могут быть обнаружены с использованием сенсора на основе соединения I.

Флуоресцентное титрование проводят, используя растворы нитроароматических соединений, перечисленные в Таблице 1, в концентрациях от 5×10-7 М до 1×10-3 М.

Для оценки эффективности предлагаемого соединения I определяют значение константы Штерна-Фольмера (Stern-Volmer) – Ksv и пределов обнаружения нитроароматического соединения (detection limit) – DT.

Константа Штерна-Фольмера – константа тушения, она же константа ассоциации полученного комплекса предлагаемого соединения с нитроароматическим соединением, выражается уравнением:

I0/I = 1+Ksv[Q],

где I0 и I – интенсивность флуоресценции до и после добавления нитроароматического соединения (quencher);

Q – концентрация нитроароматического соединения, моль/л;

Ksv – значение константы, л/моль.

Предел обнаружения нитроароматического соединения в растворе ацетонитрила определяют и рассчитывают в соответствии со следующими формулами:

где Sb – стандартное отклонение путем измерения интенсивности растворов соединения I или соединения сравнения, в отсутствии нитроароматического соединения, более 10 раз;

xi – интенсивность флуоресценции (в каждом случае) для растворов соединения I или соединения сравнения, в отсутствии нитроароматического соединения;

- средняя интенсивность флуоресценции растворов соединения I или соединения сравнения, в отсутствие нитроароматического соединения;

S – величина, характеризующая изменение интенсивности флуоресценции для растворов соединения I или соединения сравнения, в отсутствие нитроароматического соединения и в присутствии раствора нитроароматического соединения с максимальной концентрацией.

ΔI – разность интенсивности флуоресценции для растворов соединения I или соединения сравнения в отсутствие нитроароматического соединения и в присутствии раствора нитроароматического соединения с максимальной концентрацией.

Δс – разность концентраций растворов соединения I или соединения сравнения в отсутствие нитроароматического соединения и в присутствии раствора нитроароматического соединения с максимальной концентрацией.

Предлагаемые соединения Ia и Ib превосходит соединение сравнения II как по значению предела обнаружения, так и по величине константы Штерна-Фольмера (Таблица 2).

Так, предел обнаружения 2,4,6-тринитротолуола (TNT) при использовании в качестве сенсора соединений Ia и Ib превышает соответствующий предел обнаружения для соединения сравнения в 2 раза. Величина констант Штерна-Фольмера для предлагаемых соединений Ia и Ib также превышает соответствующие значения констант Штерна-Фольмера для соединения сравнения в большинстве случаев в несколько десятков раз. Кроме того, соединения Ia и Ib имеют значительно больший диапазон детектируемых нитросоединений – 18 соединений (Таблица 3), тогда как для соединения сравнения II описано применение лишь в отношении 6 нитроароматических соединений.

Таким образом, полученные результаты для предлагаемого соединения общей формулы (I) показывают высокую чувствительность и селективность для визуального обнаружения широкого ряда нитроароматических соединений.

Таблица 2. Значения констант тушения флуоресценции (констант Штерна-Фольмера) и пределов обнаружения различных нитроароматических соединений для соединения Ia, Ib и соединения сравнения – N,N-дифенил-4-[5- (пиримидин-4-ил)тиофен-2-ил]анилинa (II).

Измерения фотофизических свойств для соединений Ia и Ib проведены в дихлорметане, для соединения сравнения – N,N-дифенил-4-[5- (пиримидин-4-ил)тиофен-2-ил]анилинa (II) измерения проводили в растворе ацетонитрила.

Ex – Максимум возбуждения флуоресценции;

Em – Максимум испускания флуоресценции;

φ – Относительный квантовый выход. В качестве стандарта для измерения относительного квантового выхода использовали раствор хинин сульфата (φ = 0.55) в 0.1 Н H2SO4. Методика определения относительного квантового выполнена согласно процедуре, описанной в литературе [A. M. Brouwer. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). // Pure Appl. Chem. 2011, 83, 2213-2228].

Таблица 3. Значения констант тушения флуоресценции (констант Штерна-Фольмера) и пределов обнаружения различных нитроароматических соединений для соединения Ia и Ib.

Применение 2-монозамещенных пиразинов, содержащих трифениламиновый заместитель, общей формулы (I)

в качестве мономолекулярного оптического сенсора для обнаружения нитроароматических соединений.



 

Похожие патенты:

Группа изобретений относится к области прикладной электрохимии, а именно к устройствам на основе модифицированных электрохромных составов и способам их изготовления.

Изобретение относится к новым донорно-акцепторным олигомерам общей формулы (I) где n означает целое число от 1 до 5; m означает целое число от 1 до 3, а также способу их получения, который заключается в том, что осуществляют реакцию конденсации Кневенагеля между малононитрилом и кетоном, выбранным из ряда соединений общей формулы (II) где n, m имеют вышеуказанные значения, новые соединения отличаются отсутствием алкильных групп, растворимостью в органических растворителях, высокой термической стабильностью и эффективным поглощением света в области от 400 до 800 нм.

Изобретение относится к полимерным частицам со средним диаметром первичных частиц от 50 нм до 10 мкм, содержащим относительно общей массы: А) от 10 до 100 мас.% полимерной фазы А, получаемой свободнорадикальной сополимеризацией миниэмульсии типа масло-в-воде со смесью мономеров в качестве масляной фазы, содержащей: i) 30-99,9 мас.% одного или нескольких моноэтиленненасыщенных мономеров I с по меньшей мере одной С12-С48-н-алкильной боковой цепью; ii) 0-60 мас.% одного или нескольких моноэтиленненасыщенных мономеров II с по меньшей мере одной С1-С11-н-алкильной и/или одной С3-С48-изоалкильной боковой цепью; iii) 0,1-20 мас.% одного или нескольких мономеров III с по меньшей мере двумя несопряженными этиленовыми двойными связями; iv) 0-69,9 мас.% одного или нескольких (гетеро)ароматических моноэтиленненасыщенных мономеров IV; v) 0-40 мас.% одного или нескольких других моноэтиленненасыщенных мономеров V; и В) от 0 до 90 мас.% полимерной фазы В, получаемой последующей свободнорадикальной привитой сополимеризацией в присутствии полимерной фазы А, полученной после стадии А), смеси мономеров, содержащей: i) 0-100 мас.% одного или нескольких мономеров VI, выбранных из группы С1-С10-алкил(мет)акрилатов; ii) 0-100 мас.% одного или нескольких (гетеро)ароматических моноэтиленненасыщенных мономеров VII; iii) 0-50 мас.% одного или нескольких других моноэтиленненасыщенных мономеров VIII, при этом массовые проценты смесей мономеров, используемых на соответствующих стадиях, составляют в сумме 100 мас.%, причем указанные полимерные частицы являются однофазными полимерными частицами из полимерной фазы А или двухфазными полимерными частицами, содержащими полимерную фазу А и полимерную фазу В.

Изобретение относится к области солнечной энергетики, в частности к фотосенсибилизаторам для металлоксидных солнечных элементов. Фотосенсибилизатор представляет собой 4-[(Е)-[(2Е)-3-[4-(диметиламино)фенил]проп-2-ен-1-илиден]амино]бензойную кислоту.

Изобретение относится к способу получения фотохромных оптических изделий. Способ включает (i) нанесение первого органического растворителя на поверхность оптической подложки с образованием смоченной органическим растворителем поверхности оптической подложки, (ii) нанесение отверждаемого фотохромного состава на смоченную органическим растворителем поверхность оптической подложки и (iii) по меньшей мере частичное отверждение вышеупомянутого отверждаемого слоя фотохромного покрытия.

Изобретения относятся к области светоослабляющих устройств, обеспечивающих изменение цвета под воздействием напряжения электрического тока, а именно к устройствам на основе электрохромных составов и технологии их изготовления.

Изобретение относится к новым соединениям в ряду индолиновых спиропиранов, а именно к 1',3',3',6-тетраметил-8-[(1,3,3-триметилиндол-1-иум-2-ил)винил]спиро[хромен-2,2'-индолин] перхлорату 1 и 8-метокси-1',3',3',-триметил-6-[(1,3,3-триметилиндол-1-иум-2-ил)винил]спиро[хромен-2,2'-индолин] перхлорату 2. Новые солевые производные 1,3,3-триметилспиро[хромен-2,2'-индолина] 1 и 2 проявляют фотохромные свойства в длинноволновой области спектра с λ=728 нм и λ=466 и 668 нм соответственно и имеют время жизни открытой формы 8.4 с для соединения 1 и 118.6 и 80.5 с для соединения 2.

Изобретение относится к применению 4-(5-R-тиофен-2-ил)пиримидина общей формулы (I) для удаленного обнаружения присутствия нитроароматических соединений на поверхностях, в растворах неполярных растворителей, воды и в воздухе.

Изобретение относится к электрохромному модулю, содержащему: первую подложку, вторую подложку, где первая и/или вторая подложки обладают электропроводностью или приобретают электропроводность благодаря соответственно первому электропроводящему покрытию или второму электропроводящему покрытию, покрытие на основе электрохромного полимера, нанесенное на первую подложку или первое проводящее покрытие, слой накопления ионов, размещенный на второй подложке или втором проводящем покрытии, и электрически последовательно соединенный электролит, размещенный между электрохромным покрытием и слоем накопления ионов.

Настоящее изобретение относится к сопряженным полимерам. Описан сопряженный полимер, содержащий полностью сопряженную полимерную последовательность по меньшей мере двух чередующихся триад, содержащих первое повторяющееся звено, представляющее собой одно или более звеньев алкилендиокситиофена, и второе повторяющееся звено, выбранное из одного или более ароматических звеньев, причем сопряженный полимер является желтым в нейтральном состоянии и демонстрирует максимум поглощения между 300 и 500 нм, а при окислении является пропускающим между 400-750 нм, при этом полимерная последовательность имеет структуру где А представляет собой ароматическое звено, х представляет собой 0 или 1, у представляет собой 0 или 1, n составляет от 2 до 200 000; X представляет собой S, a R1, R2, R3, R4, R5, R6, R7 и R8 независимо представляют собой Н, С2-С30 алкенилокси, где кислород находится в любом положении, и где А выбран из: или , где X представляет собой CR2, и R независимо представляет собой Н или C1-С30 алкил.

Изобретение относится к соединению, представленному общей формулой (I), или его фармацевтически приемлемой соли, которые могут найти применение для профилактики и/или лечения заболевания, связанного с KCNQ2-3 каналом.
Наверх