Способ определения параметров атмосферных циклонов



Способ определения параметров атмосферных циклонов
Способ определения параметров атмосферных циклонов
Способ определения параметров атмосферных циклонов
Способ определения параметров атмосферных циклонов
Способ определения параметров атмосферных циклонов
Способ определения параметров атмосферных циклонов
Способ определения параметров атмосферных циклонов
Способ определения параметров атмосферных циклонов
Способ определения параметров атмосферных циклонов
Способ определения параметров атмосферных циклонов
Способ определения параметров атмосферных циклонов

Владельцы патента RU 2725508:

Федеральное государственное бюджетное учреждение науки Институт физики атмосферы им. А.М. Обухова Российской академии наук (ИФА ИМ. А.М. ОБУХОВА РАН) (RU)

Способ включает периодическое измерение с временной дискретностью Δt≤6 часов приземного атмосферного давления p(ϕi, λi, t), i∈(1, I), где: I – общее количество точек измерений на территории наблюдения за погодой, ϕi – географическая широта и λi – долгота i–й локальной точки измерения давления, t – момент измерений, дальнейшее объединение измеренных локальных данных в единое поле приповерхностных атмосферных давлений Dr(N, M, t)={p(N, M, t)}, где: N – расстояние между данными приземного атмосферного давления в градусах широты, M – расстояние между данными приземного атмосферного давления в градусах долготы. Дальнейшее представление поля Dr(N, M, t) в виде трехмерной матрицы N×M×t и поиск на ней циклонов путем последовательного обзора давлений в ячейках матрицы полем зрения, включающим центральное окно и не менее восьми периферийных окон, сдвинутых по осям N и M относительно центрального окна на текущее расстояние Δ=1-10 размеров дискрет трехмерной матрицы N×M×t. Идентификацию найденных циклонов и пространственного расположения их осей вращения на поле метеорологических данных на каждом шаге обзора определяют по наличию минимуму давления в центральном окне относительно периферийных окон. Площадные размеры найденных циклонов определяют по размеру поля зрения при равенстве давлений в её периферийных окнах. После нахождения всех циклонов на поле метеорологических данных проводят измерение их интенсивности δp из условия δp=Plast-Рс, где: Рс, Plast – давление в центре и на периферии циклона соответственно, гПа. Далее производят фильтрацию циклонов по критерию превышения их интенсивностью δp порогового значения из условия δp≥20 гПа. После фильтрации интенсивных циклонов оценивают их кинетическую энергию Ек и их пороговую обработку из выражения Ек ≥Епор, где: Епор – пороговое значение кинетической энергии циклона, приводящее к физическим повреждениям зданий и сооружений на пути их движения. Далее в последовательные моменты времени ti c временной дискретностью Δt=ti-ti-1 обновления, Δt≤6 часов, метеорологических данных, по найденному положению географических координат, широте ϕ и долготе λ циклонических центров в каждый момент ti их наблюдений на сфере Земли и известному значению временной дискретности Δt наблюдений вычисляют скорость, траекторию движения разрушительных циклонов, оставшееся время до прибытия циклонов в населенные пункты, расположенные на пути движения циклонов, измеренные значения параметров циклонов, а также степень их опасности для объектов, расположенных на пути движения циклонов. Технический результат – увеличение скорости обнаружения и измерения параметров атмосферных циклонов и, как следствие, - повышение оперативности предупреждения населения и дежурных средств Министерства чрезвычайных ситуаций (МЧС) о надвигающихся климатических угрозах. 11 ил.

 

Область техники

Изобретение относится к метеорологии (G01W1/00) и цифровой обработке (G06N 7/06) результатов измерений, конкретно к способу определения параметров атмосферных циклонов.

Изобретение может быть использовано для оценки степени опасности циклонов в задачах локального и регионального прогноза погоды, в задачах исследований физики атмосферы Земли и оперативного предупреждения населения и дежурных средств Министерства чрезвычайных ситуаций (МЧС) о надвигающихся климатических угрозах.

Уровень техники

Известен способ определения параметров атмосферных циклонов /US 7970543/ для предсказания разрушающего потенциала тропических циклонов с помощью расчета его интегральной кинетической энергии по шкале Пауэлла/Рейнхолда. Оценка разрушающего потенциала тропических циклонов основана на анализе метеорологических полей оперативного прогноза, полей скорости ветра и результатов расчета численных моделей прогноза погоды. В результате тропическим циклонам присваивается индекс по шкале Пауэлла/Рейнхолда. Использование шкалы Пауэлла/Рейнхолда позволяет более точно оценить возможные разрушения, вызванные тропическим циклоном, чем при использовании «стандартной» категории тропических циклонов по шкале Саффира-Симпсона, основанной на измерении максимальной скорости ветра, развиваемой в циклоне.

Недостатком способа определения параметров атмосферных циклонов /US 7970543/, является недостаточная оперативность прогнозов, связанная с необходимостью использования большого массива данных для расчета интенсивности циклона и степени его опасности, связанные с повышенным объемом измерений подробных полей скорости ветра в зоне зарождения циклона.

Известен способ определения параметров атмосферных циклонов /RU 2652642/ включающий измерение с заданной временной дискретностью Δt приземного атмосферного давление p(N,M,t), где t – момент измерений с помощью метеорологической аппаратуры, рассредоточенной по территории метеонаблюдения за погодой, объединение измеренных данных в единое поле атмосферных давлений Dr(N,M,t) = {p(N,M,t)}, где: N – расстояние между данными приземного атмосферного давления в градусах широты, M – расстояние между данными приземного атмосферного давления в градусах долготы, t – момент измерений, поиск в едином поле приземного атмосферного давления Dr(N,M,t) циклонов и измерение их параметров, включая интенсивность циклонов, их размеры, скорость и траекторию их движения.

При этом для оценки интенсивности и степени опасности циклонов используют систему малоинерционных датчиков давления или температуры, забрасываемых метеорологической авиацией в центр циклона. Для оценки геометрических размеров циклонов в море используют прогнозные гидрометеорологические карты по последней замкнутой изобаре с давлением p(N,M,t) порядка 1000 мБар, от которого отсчитывается величина подъема уровня моря в центре циклона (1 мБар=1 см). Поверхностное напряжение штормового ветра в зоне морского циклона задается максимальной скоростью на высоте 10 м, и эмпирическим коэффициентом СА - с величиной 0,002 для теплых морей, или СA ≤ 0,001 для дальневосточных морей в холодные сезоны года.

Недостатками известного способа определения параметров атмосферных циклонов (RU 2652642) является недостаточная оперативность измерений параметров циклонов, связанная с необходимостью применения авиационных средств для измерений интенсивности и степени опасности циклонов.

Задачей изобретения является повышение оперативности предупреждения населения и дежурных средств Министерства чрезвычайных ситуаций (МЧС) о надвигающихся климатических угрозах.

Техническим результатом изобретения является увеличение скорости обнаружения и измерения параметров атмосферных циклонов.

Сущность изобретения

Решение достижение заявленного технического результата и, как следствие, решение поставленной задачи обеспечивается тем, что предложенный способ определения параметров атмосферных циклонов включает измерение с заданной временной дискретностью Δt приземного атмосферного давление p(N,M,t), где t – момент измерений с помощью метеорологической аппаратуры, рассредоточенной по территории метеонаблюдения за погодой. Далее производится объединение измеренных данных в единое поле атмосферных давлений Dr(N,M,t) = {p(N,M,t)}, где: N – расстояние между данными приземного атмосферного давления в градусах широты, M – расстояние между данными приземного атмосферного давления в градусах долготы, t – момент измерений. Затем поиск в едином поле приземного атмосферного давления Dr(N,M,t) циклонов и измерение их параметров, включая интенсивность циклонов, их размеры, скорость и траекторию их движения,

Новым в изобретении является следующая последовательность отличительных операций над метеорологическими сигналами:

- Представление поля Dr(N,M,t) приземного атмосферного давления в каждый момент времени t в виде трехмерной матрицы N x M x t;

- Поиск циклонов на матричном поле приповерхностных атмосферных давлений Dr(N,M,t) путем последовательного обзора давлений в ячейках матрицы полем зрения, включающим центральное окно и не менее восьми периферийных окон, сдвинутых по осям N и M относительно центрального окна на изменяемое расстояние Δ = 1-10 размеров дискрет трехмерной матрицы метеорологических данных N x M x t;

- Идентификация циклонов и пространственного расположения их осей вращения на поле метеорологических данных на каждом шаге обзора определяется по наличию минимума давления в центральном окне относительно периферийных окон;

- Измерение размеров найденных циклонов проводится путем совмещения оси центрального окна с осью циклона, пошагового увеличения поля зрения (сдвигом периферийных окон относительно центрального окна) и одновременного измерения давления {p(N,M,t)} в периферийных окнах до момента равенства давлений в указанных окнах;

- Определение площади циклона производится по размерам поля зрения в момент замкнутости изобары атмосферных давлений на его периферийных окнах;

- Измерение интенсивности δp циклонов производится из условия δp = Plast - Рс, где: Рс, Plast – давление в центре и на периферии циклона соответственно, гПа;

- Фильтрация интенсивных циклонов производится по критерию превышения их интенсивностью δp порогового значения по критерию δp ≥20 гПа;

- Оценка кинетической энергии отфильтрованных циклонов определяется по формуле:

E k ~M ( δp ρ l c ) 2 , lс = 2*ω*sin ϕ,

где: Mв – масса столба воздуха в циклоне, кг; ρ – плотность атмосферы, кг*м-3; lс – параметр Кориолиса, с-1; ω - угловая скорость вращения Земли вокруг оси; ϕ - географическая широта местоположения центра циклона, градусы;

- Оценка разрушительной силы кинетических циклонов проводится из условия Ек ≥Епор, где Епор – пороговое значение кинетической энергии циклона, приводящее к физическим повреждениям зданий и сооружений на пути их движения.

Доказательство достижения заявленного технического результата и решения поставленной задачи

Представление поля Dr(N,M,t) приземного атмосферного давления в каждый момент времени t в виде трехмерной матрицы N x M x t, поиск циклонов на матричном поле приповерхностных атмосферных давлений Dr(N,M,t) путем последовательного обзора давлений в ячейках матрицы центральным окном и не менее восьми периферийными окнами с указанными выше параметрами, последовательная идентификация циклонов по интенсивности, кинетической энергии и разрушительной силе позволяют расчетным путем на поле метеорологических данных с локальных пунктов наблюдения за погодой выявить потенциально опасные атмосферные циклоны и своевременно предупредить население и дежурные средств Министерства чрезвычайных ситуаций (МЧС) о циклонических угрозах. При этом в отличие от прототипа (RU 2652642) исключается необходимость использования авиационных средств для оценки параметров атмосферных циклонов. Следствием этого является достижение заявленного технического результата по уменьшению времени выявления и оценке параметров атмосферных циклонов, позволяющего решить поставленную задачу изобретения по своевременному оповещению населения и МЧС о надвигающихся климатических угрозах.

Ссылка на чертежи

Сущность изобретения поясняется рисунками, представленными на фиг. 1 – фиг 11.

На фиг. 1 – представлен пример пространственного расположения двух атмосферных циклонов в момент замкнутости их изобар. На фиг. 2 – пример гидрометеорологической карты Dr(N,M,t) с семью атмосферными циклонами различной интенсивности и размеров. На фиг. 3 – рисунок, поясняющий обзор давлений с помощью поля зрения, включающего центральное окно и восемь периферийных окон. На фигурах 4,…,10 – рисунки, поясняющие алгоритм поиска циклонов на метеорологической карте Dr(N,M,t), с правой стороны каждой фигуры представлены примеры обзора атмосферных давлений, а с левой стороны - сетка связности этих давлений. На фиг. 4 – представлен пример атмосферных давлений и их связанность для трех кандидатов в циклоны с минимальными давлениями. На фиг. 5 – результат поиска связанных соседей кандидата с давлением P(t) = 995 гПа, не превышающим давление кандидата на Δ P(t) = 5 гПа. На фиг. 6 – примеры связанных соседей кандидатов при сдвижке поля зрения в левую сторону. На фиг. 7 – оставшиеся два кандидата, который по минимуму давления не пересеклись с другими рассматриваемыми соседями. На фиг. 8 – результат поиска соседей первого кандидата с пониженным давлением P(t) = 990 гПа, представленного на фиг. 7. На фиг. 9 - – результат поиска соседей второго кандидата с пониженным давлением P(t) = 989 гПа, представленного на фиг. 7. На фиг. 10 – представлены два найденных циклона, параметры которых надо посчитать. На фиг. 11 – представлены примеры найденных площадных размеров, формы и распределений давлений в циклонах, представленных на фиг. 10.

На фиг. 1 - фиг. 11 обозначены:

1 – циклон (атмосферный вихрь с пониженным давлением воздуха, воздушные массы которого вращаются против часовой стрелки в северном полушарии и по часовой стрелке в южном;

2 - центр циклона (ось вращения воздушных масс циклона);

3 – изобара (изолиния, соединяющая равные значения атмосферного давления на метеорологических картах);

4 - замкнутая изобара (изолиния в виде замкнутой кривой);

5 – седловина (область относительно высокого давления между двумя циклонами);

6 – радиус R циклона, км;

7 – глубина циклона, км;

8 –нижняя точка циклона;

9 – пример изобарического поля Dr(N,M,t) приземного атмосферного давления, на котором производится поиск циклонов по предлагаемому способу;

10 – поле зрения, включающее центральное окно и периферийные окна обзора изобарического поля Dr(N,M,t);

10.1 - центральное окно регистрации низкого давления;

10.2 - периферийные окна регистрации повышенного давления относительно центрального окна;

10.3 - периферийные окна регистрации пониженного давления относительно центрального окна;

11 - поле обзора атмосферных давлений;

11.1, 11.2, 11,3 – первый, второй, третий кандидат в циклоны в соответствии с нарастающим в них давлением 989, 990, 995 гПa;

12 - сетка связности давлений в поле обзора 11;

13, 14 – изобарическое поле первого и третьего раздельно существующих отфильтрованных циклонов 11.1, 11.3;

Рс – давление в нижней части циклона 1, гПa;

Plast – давление в верхней части циклона 1 (на его замкнутой изобаре), гПa;

δp = (Plast – Рс)– интенсивность циклона, гПa;

R – радиус циклона (среднее расстояние от центра циклона до замкнутой изобары), км;

S = 3.14*R2 - площадь циклона (область, занятая циклоном), км2;

Раскрытие сущности изобретения

Согласно фиг. 1 - 11 способ определения параметров атмосферных циклонов состоит в последовательности выполнения следующих операций.

Вначале с помощью метеорологической аппаратуры, расположенной на I на локальных метеорологических пунктах наблюдения за погодой, проводят с заданной временной дискретностью Δt ≤ 6 часов периодическое измерение на заданной территории 9 приземного атмосферного давления p(ϕi,λi,t), i∈(1,I), где: I – общее количество точек измерений на территории 9 наблюдения за погодой, ϕi –географическая широта и λi – долгота i –й локальной точки измерения давления, t – момент измерений.

Далее данные p(ϕi,λi,t), i∈(1,I) локальных измерений объединяют в единое поле 9 (фиг. 2) изобар атмосферных давлений Dr(N,M,t) = {p(N,M,t)}, где: N – расстояние между данными приземного атмосферного давления в градусах широты, M – расстояние между данными приземного атмосферного давления в градусах долготы.

Затем поле 9 изобар Dr(N,M,t) приземного атмосферного давления представляют в виде соответствующей трехмерной матрицы N x M x t, в ячейки которой вводят соответствующие данные локальных измерений атмосферных давлений р(ϕi,λi,t).

Далее на матричном поле изобар приповерхностных атмосферных давлений поля 9 проводят поиск географических координат (ϕi, λi) атмосферных циклонов 1 (фиг. 1 -2) на момент времени t измерений.

Поиск географических координат (ϕi, λi) атмосферных циклонов 1 на поле 9 (фиг. 2) для каждого момента времени t проводят путем последовательного обзора давлений в ячейках матрицы N x M полем 10 зрения, включающим центральное окно 10.1 регистрации низкого давления в поле зрения 10, не менее шести периферийными окнами 10.2 регистрации повышенного давления относительно центрального окна 10.1 и не менее двумя периферийными окнами 10.3 регистрации пониженного давления относительно центрального окна 10.1. Периферийные окна 10.2, 10 3 выполнены с возможностью их сдвига по осям N и M относительно центрального окна 10.1 и друг друга на расстояние Δ = 1-10 размеров дискрет- ячеек трехмерной матрицы метеорологических данных N x M x t.

Алгоритм поиска циклонов 1 на изобарическом поле 9 поясняется рисунками, представленными на фиг. 4-11.

Согласно фиг. 4-11 поиск циклонов 1 проводят путем поиска локальных минимумов 8 (фиг. 1) давления на изобарическом поле 9 (фиг. 2) при увеличенном поле 10 зрения при расстоянии между окнами Δ = 10 размеров дискрет.

Для этого расширенным полем 10 зрения производят последовательный обзор поля 9 с целью поиска на изобарическом поле 9 минимальных давлений 8 и соответствующих им географических координат (ϕi, λi) “кандидатов” в циклоны. Наличие “кандидата” в циклоны и его приближенное географическое положение определяют по наличию минимума давления р(ϕi, λi) в центральном окне 10.1 поля 10 зрения по сравнению с давлениями в периферийных окнах 10.2 -10.3. На фиг. 3 представлено пример поля 11 обзора полем 10 зрения атмосферных давлений с тремя кандидатами в циклоны и сетка 12 связанности их между собой с нарастающим в них минимальным давлением 989, 990, 995 гПа соответственно.

После окончания пространственного обзора изобарического поля 9 и нахождения всех “кандидатов” в циклоны производят уточнение их географических координат (ϕi, λi) и фильтрацию на предмет наличия их пространственного разделения между собой и отнесения их к разряду циклонов. Для этого уменьшают поле 10 зрения путем уменьшения пространственного расстояния Δ между его окнами 10.1, 10.2, 10.3, например, Δ = 1 размеров дискрет.

Далее суженным полем 10 зрения проводят уточнение (фиг. 5-фиг. 10) распределения давления р(ϕi, λi) найденных “кандидатов” в зоне их пространственного расположения (ϕi, λi) на изобарическом поле 9 по минимуму давления в центральном окне 10.1 относительно периферийных окон 10.2, 10.3 поля 10 зрения.

После уточнения пространственного расположения (ϕi, λi) “кандидатов” в циклоны 1 производят отсеивание «ненадлежащих кандидатов» путем совмещения центрального окна 10.1 с ячейкой минимального давления, последовательного увеличения географического расстояния Δ между периферийными окнами 10.2, 10.3 до момента окончания роста или снижения в них изобарического давления.

В первом случае регистрируют наличие циклона 1 и его размеры 4, 6 (фиг. 1) по замкнутости изобары давления вокруг его центральной оси и разности давлений в центре и на периферии циклона. Также регистрируют географическим положение (ϕi, λi) циклона 1 по минимуму давления в поле 10 зрения центрального окна 10.1 на изобарическом поле 9 и - интенсивность δp циклона 1 по разности δp = (Plast – Рс), гПа, давлений в центре Рс циклона 1 и на его периферии Plast.

Во втором случае при снижении изобарического давления Plast на периферии «кандидата» в циклоны 1 и отсутствия замкнутости его изобары, свидетельствующих об отсутствии циклона 1 с координатами (ϕi, λi) «кандидата» или наличия седла 5 между соседними циклонами 1, поле 10 зрения перемещают в сторону снижения изобарического давления и уточняют наличие или отсутствие смежного циклона 1.

Далее производят фильтрацию циклонов 1, обнаруженных на изобарическом поле 9 (фиг.2) по критерию превышения их интенсивности δp порогового значения по правилу

δp ≥20 гПа. (1)

После фильтрации интенсивных циклонов 1, прошедших пороговую обработку (1), оценивают их кинетическую энергию из выражений:

E k ~Mв ( δp ρ l c ) 2 , (2)

lс = 2*ω*sin ϕ (3)

где:

Mв – масса столба воздуха в циклоне, кг;

ρ – плотность атмосферы, кг*м-3;

lс – параметр Кориолиса, с-1;

ω - угловая скорость вращения Земли вокруг оси;

ϕ - географическая широта местоположения центра циклона, градусы.

После оценки кинетической энергии циклонов определяют их разрушительную силу из условия

Ек ≥Епор, (4)

где: Епор – пороговое значение кинетической энергии циклона, приводящее к физическим повреждениям зданий и сооружений на пути их движения.

Циклоны 1, прошедшие пороговую обработку (4), регистрируют в качестве опасных с указанием их площадных размеров 4, 6, географического положения (ϕi, λi), кинетической энергии, степени их интенсивности и опасности на момент t измерений.

Далее в последовательные моменты времени ti c временной дискретностью Δt = ti - ti-1, Δt ≤ 6 часов, производят обновление метеорологических данных. По найденному положению географических координат, широте ϕ и долготе λ, циклонических центров 2 в моменты ti-1 и ti их наблюдений на сфере Земли и известному значению временной дискретности Δt ≤ 6 часов наблюдений вычисляют скорость, траекторию движения разрушительных циклонов 1, оставшееся время до прибытия их в населенные пункты, расположенные на пути движения циклонов 1.

При этом объединение траекторий движения двух ближайших циклонических центров 2 циклонов 1 в единую траекторию производят, если максимальное расстояние между центрами 2 этих циклонов 1 в последовательные моменты времени Δt ≤ 6 часов не превышает 800 км и изменение давления в их центрах не превышает 20 гПа. Одновременно рассчитывают скорость перемещения и время жизни объединенных циклонов.

Результат вычислений текущих параметров атмосферных циклонов 1 представляют в форме соответствующего табличного массива цифровых данных (Мд).

Измеренные значения параметров Мд циклонов 1, а также степень их опасности для объектов, расположенных на пути движения циклонов, регистрируют соответствующей аппаратурой документирования и транслируют дежурным диспетчерам региональных метеорологических центров и министерства чрезвычайных ситуации для оповещения населения и проведения своевременных профилактических мероприятий.

Промышленная применимость.

Изобретение разработано на уровне технического проекта и прошло экспериментальную проверку по обнаружению и измерению параметров атмосферных циклонов на базе данных метеорологических наблюдений погоды для центральных районов страны и районов Крайнего Севера.

Экспериментальная проверка изобретения показала достижение заявленного технического результата и решение поставленной задачи.

Изобретение рекомендуется использовать для оценки степени опасности полярных циклонов в задачах локального и регионального прогноза погоды, в задачах исследований физики атмосферы Земли и оперативного предупреждения населения и дежурных средств Министерства чрезвычайных ситуаций (МЧС) о надвигающихся климатических угрозах.

Способ определения параметров атмосферных циклонов, включающий периодическое измерение с временной дискретностью Δt≤6 часов приземного атмосферного давления p(ϕi, λi, t), i∈(1,I), где: I – общее количество точек измерений на территории наблюдения за погодой, ϕi –географическая широта и λi – долгота i–й локальной точки измерения давления, t – момент измерений, дальнейшее объединение измеренных локальных данных в единое поле атмосферных давлений Dr(N, M, t) = {p(N, M, t)}, где: N – расстояние между данными приземного атмосферного давления в градусах широты, M – расстояние между данными приземного атмосферного давления в градусах долготы, поиск в едином поле приземного атмосферного давления Dr(N, M, t) циклонов и измерение их параметров, включая интенсивность циклонов, их размеры, скорость и траекторию их движения, отличающийся тем, что поле Dr(N, M, t) приземного атмосферного давления в каждый момент времени t представляют в виде трехмерной матрицы N×M×t, где N – расстояние по вертикали между данными в градусах широты, M – расстояние по горизонтали между данными в градусах долготы, поиск циклонов на матричном поле приповерхностных атмосферных давлений Dr(N, M, t) проводят путем последовательного обзора давлений в ячейках матрицы полем зрения, включающим центральное окно и не менее восьми периферийных окон, сдвинутых по осям N и M относительно центрального окна на текущее расстояние Δ=1-10 размеров дискрет трехмерной матрицы метеорологических данных N×M×t, идентификацию циклонов и пространственное расположение их осей вращения на поле метеорологических данных на каждом шаге обзора определяют по наличию минимума давления в центральном окне относительно периферийных окон, размеры найденного циклона измеряют путем совмещения оси центрального окна с осью циклона, пошагового увеличения размеров поля зрения и одновременного измерения давления {p(N, M, t)} в его периферийных окнах, измерение размеров циклона заканчивают при равенстве давлений в периферийных окнах, площадь циклона определяют по размерам поля зрения в момент замкнутости изобары атмосферных давлений на периферийных окнах, после нахождения всех циклонов на поле метеорологических данных проводят измерение их интенсивности δp из условия

δp=Plast-Рс,

где:

Рс, Plast – давление в центре и на периферии циклона соответственно, гПа,

далее производят фильтрацию циклонов по критерию превышения их интенсивностью δp порогового значения по критерию

δp≥20 гПа,

после фильтрации интенсивных циклонов оценивают их кинетическую энергию из выражения

E k ~Mв ( δp ρ l c ) 2 ,

lс=2⋅ω⋅sin ϕ

где:

Mв – масса столба воздуха в циклоне, кг;

ρ – плотность атмосферы, кг⋅м-3;

lс – параметр Кориолиса, с-1;

ω - угловая скорость вращения Земли вокруг оси, с-1;

ϕ - географическая широта местоположения центра циклона, градусы;

после оценки кинетической энергии циклонов определяют их разрушительную силу из условия

Ек≥Епор,

где: Епор – пороговое значение кинетической энергии циклона, приводящее к физическим повреждениям зданий и сооружений на пути их движения,

далее в последовательные моменты времени ti c временной дискретностью Δt=ti-ti-1 обновления, Δt≤6 часов, метеорологических данных, по найденному положению географических координат, широте ϕ и долготе λ циклонических центров в каждый момент ti их наблюдений на сфере Земли и известному значению временной дискретности Δt наблюдений вычисляют скорость, траекторию движения разрушительных циклонов, оставшееся время до прибытия циклонов в населенные пункты, расположенные на пути движения циклонов, измеренные значения параметров циклонов, а также степень их опасности для объектов, расположенных на пути движения циклонов, регистрируют соответствующей аппаратурой документирования и транслируют дежурным диспетчерам региональных метеорологических центров и министерства чрезвычайных ситуации для оповещения населения и проведения своевременных профилактических мероприятий.



 

Похожие патенты:

Изобретение относится к области биометрической аутентификации. Техническим результатом является обеспечение устойчивой биометрической аутентификации на основании венозных сетей без отображения имени.

Изобретение относится к области компьютерной безопасности электронных систем транспортных средств. Технический результат заключается в предотвращении компьютерных атак на транспортное средство.

Изобретение относится к области сонификации событий кибербезопасности. Техническим результатом является повышение эффективности реагирования на возникающие события кибербезопасности в сетевых зонах за счет применения схемы сонификации событий.

Изобретение относится к вычислительной технике. Технический результат заключается в уменьшении вероятности перегрузки ВМЗ в сети, содержащей ограничительные требования на взаимодействия ВМ с ВМЗ.

Изобретение относится к области информационной безопасности данных. Технический результат настоящего изобретения заключается в обнаружения источника вредоносной активности на компьютерной системе на основании анализа связей между объектами упомянутой компьютерной системы.

Изобретение относится к области вычислительной техники, а в частности к способу и устройству обработки информации для наполнения библиотеки модели моделей данных.

Изобретение относится к вычислительной технике. Технический результат заключается в повышении уровня безопасности смарт-терминалов.

Изобретение относится к способу формирования журнала при исполнении файла с уязвимостями. Технический результат заключается в повышении точности выявления наличия в виртуальной машине вредоносного приложения, эксплуатирующего уязвимости безопасного файла.

Изобретение относится к вычислительной технике. Технический результат заключается в повышении достоверности определения типа ожидаемых блоков двоичной информации.

Изобретение относится к области вычислительной техники. Техническим результатом является обеспечение поиска похожих отпечатков устройств из множества всех известных отпечатков устройств на текущий отпечаток устройства, посредством которого пользователь взаимодействует с удаленными сервисами.

Группа изобретений относится к вычислительным системам и может быть использована для построения и обработки модели естественного языка. Техническим результатом является улучшение предсказания вероятности появления лингвистической единицы.
Наверх