Способ электролитно-плазменной обработки детали

Изобретение относится к электролитно-плазменной обработке металлических деталей и может быть использовано для полирования лопаток турбомашин из никелевых и титановых сплавов. Способ включает погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на деталь электрического потенциала. В процессе обработки вокруг обрабатываемой детали обеспечивают постоянное магнитное поле равномерной напряженности в диапазоне 50-500 кА/м по всей обрабатываемой поверхности. В результате повышается производительность обработки за счет концентрации заряженных частиц в области обрабатываемой поверхности. 6 з.п. ф-лы, 1 пр.

 

Изобретение относится к электролитно-плазменной обработке металлических деталей и может быть использовано для полирования лопаток турбомашин из никелевых и титановых сплавов.

Лопатки турбин обладают повышенной чувствительностью к концентраторам напряжения. Поэтому дефекты, образующиеся в процессе изготовления этих деталей, недопустимы, поскольку вызывают возникновение интенсивных процессов разрушения. Это вызывает проблемы при механической обработке поверхностей деталей турбомашин. В этой связи развитие способов получения высококачественных поверхностей деталей турбомашин является весьма актуальной задачей.

Наиболее перспективными методами обработки лопаток турбомашин являются электрохимические методы полирования поверхностей [Грилихес С.Я. Электрохимическое и химическое полирование: Теория и практика. Влияние на свойства металлов. Л.: Машиностроение, 1987], при этом наибольший интерес для рассматриваемой области представляют методы электролитно-плазменного полирования (ЭПП) деталей [например, Патент ГДР (DD) №238074 (А1), МПК C25F 3/16, опубл. 06.08.86, а также Патент РБ№ 1132, кл. C25F 3/16, 1996, БИ №3].

Известен способ полирования металлических поверхностей, включающий анодную обработку в электролите [Патент РБ N1132, МПК C25F 3/16, 1996, БИ N3], а также способ электрохимического полирования [Патент США N 5028304, кл. В23Н 3/08, C25F 3/16, C25F 5/00, опубл. 02.07.91].

Известен также способ электролитно-плазменного полирования (ЭПП) детали из металлических сплавов, включающий погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала [Патент РФ №2373306, МПК C25F 3/16. опубл. в Бюл. №32, 2009].

Однако известные способы ЭПП не позволяют стабилизировать равномерность обработки поверхности детали.

Наиболее близким к заявляемому техническому решению является способ электролитно-плазменной обработки детали, включающий погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на деталь электрического потенциала (патент РФ №2357019, МПК C25F 3/16. Опубл.: Бюл. №15, 2009).

Недостатком прототипа (патент РФ №2357019) является недостаточно высокая производительность процесса обработки и невозможность стабилизации равномерности обработки поверхности детали.

Задачей, на решение которой направлено заявляемое изобретение, является повышение производительности обработки поверхности детали

Техническим результатом предлагаемого технического решения является обеспечение равномерной обработки поверхности детали при одновременном повышении его производительности.

Технический результат достигается тем, что в способе электролитно-плазменной обработки детали, включающем погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на деталь электрического потенциала, в отличие от прототипа, в процессе обработки вокруг обрабатываемой детали обеспечивают постоянное магнитное поле равномерной напряженности в диапазоне 50-500 кА /м по всей обрабатываемой поверхности.

Кроме того возможны следующие дополнительные приемы выполнения способа: на деталь подают положительный электрический потенциал от 280 до 350 В; на деталь подают отрицательный электрический потенциал от 280 до 350 В; осуществляют обработку детали из титанового сплава, при этом в качестве электролита используют водный раствор с содержанием от 3 до 7 вес. % гидроксиламина солянокислого с содержанием от 0,7 до 0,8 вес. % NaF или KF, а обработку детали ведут полированием до обеспечения шероховатости не ниже Ra=0,08-0,12 мкм при температуре от 74°С до 86°С; осуществляют обработку детали из никелевого или хромоникелевого сплава, при этом в качестве электролита используют 4-8% водный раствор сульфата аммония, а обработку детали ведут полированием до обеспечения шероховатости не ниже Ra=0,08-0,12 мкм при температуре от 65°С до 80°С; в качестве детали используют лопатку турбомашины, а магнитное поле создают электромагнитом. Наличие магнитного поля позволяет равномерно распределить заряженные частицы по обрабатываемой поверхности, а также повысить их концентрацию в области обрабатываемой поверхности за счет их «захвата» магнитным полем (Физика плазмы для физиков. Арцимович Л.А., Сагдеев Р.З., 1979 г.)

Сущность заявляемого способа, возможность его осуществления и использования иллюстрируются описанием процесса обработки и нижеприведенными примерами.

Заявляемый способ электрохимического полирования металлических изделий осуществляется следующим образом. Обрабатываемое металлическое изделие погружают в ванну с водным раствором электролита, помещают в полость устройства, обеспечивающего равномерное магнитное поле по всей обрабатываемой поверхности изделия, производят, прикладывают к изделию положительное напряжение, а к электролиту - отрицательное (анодная обработка) или прикладывают к изделию отрицательное - напряжение, а к электролиту - положительное (катодная обработка), в результате чего достигают возникновения вокруг детали парогазовой оболочки и разряда между обрабатываемым изделием и электролитом. В качестве ванны используют емкость, выполненную из материала, стойкого к воздействию электролита. Обработку ведут в среде электролита при поддержании вокруг детали парогазовой оболочки и равномерного магнитного поля.

При осуществлении способа происходят следующие процессы. Под действием протекающих токов происходит нагрев поверхности детали и образование вокруг нее парогазовой оболочки. Излишняя теплота, возникающая при нагреве детали и электролита, отводится через систему охлаждения. При этом поддерживают заданную температуру процесса. Под действием электрического напряжения (электрического потенциала между деталью и электролитом) в парогазовой оболочке возникает разряд, представляющий из себя ионизированную электролитическую плазму, обеспечивающую протекание интенсивных химических и электрохимических реакций между обрабатываемой деталью и средой парогазовой оболочки. Наличие постоянного магнитного поля позволяет стабилизировать процессы обработки и повысить концентрацию ионов в парогазовой оболочке, что приводит также к повышению производительности процесса обработки.

При подаче положительного потенциала на деталь, в процессе протекания указанных реакций, происходит анодирование поверхности детали с одновременным химическим травлением образующегося окисла.

При подаче положительного потенциала на деталь, в процессе протекания указанных реакций происходит анодирование поверхности детали с одновременным химическим травлением образующегося окисла. Причем при анодной поляризации парогазовый слой состоит из паров электролита, анионов и газообразного кислорода. Поскольку травление происходит, в основном, на микронеровностях, где образуется тонкий слой окисла, а процессы анодирования продолжаются, то в результате совместного действия этих факторов происходит уменьшение шероховатости обрабатываемой поверхности и, как следствие, полирование последней.

При катодной поляризации парогазовая оболочка вокруг детали состоит из паров электролита, катионов и газообразного водорода, поэтому наряду с химическим взаимодействием катионов с материалом поверхностного слоя детали происходит возникновение в парогазовой оболочке микроискровых разрядов, что приводит к электроэрозионному и кавитационному воздействию на обрабатываемую поверхность.

Пример. Обрабатываемые образцы лопаток из хромоникелевых сплавов (ХН45МВТЮБР-ИД, ХН45МВТЮБР-ПД) погружали в ванну с водным раствором электролита и прикладывали к детали положительное, а к электролиту - отрицательное напряжение. Обеспечивали постоянное магнитное поле, напряженностью в диапазонах от 50 до 500 кА /м.Полирование поверхности пера лопатки производили прикладывая к обрабатываемой лопатке электрический потенциал величиной от 280 до 350 В, используя постоянное магнитное поле напряженностью 50-500 кА/м и проводили полирование до достижения требуемой величины шероховатости поверхности. Полирование проводили в среде электролита: 4-8% водный раствор сульфата аммония. Кроме того, в ряде случаев в состав электролита дополнительно вводили поверхностно-активные вещества в концентрации 0,6-1,2%. При обработке проводили циркуляционное охлаждение электролита (поддерживалась средняя температура процесса в интервале 65…80°С).

Неудовлетворительным результатом (Н.Р.) считался результат, при котором отсутствовал эффект полирования или уменьшения шероховатости поверхности детали, не обеспечивалась равномерность обработки поверхности и производительность процесса не превышала производительность процесса обработки по способу-прототипу в 1,4-раза.

Условия обработки по предлагаемому способу.

Электрический потенциал (напряжение):

Положительный потенциал: 270 В - Н.Р.; 280 В - удовлетворительный результат (У.Р.); 290 В - У.Р.; 300 В - У.Р.; 300 В - У.Р.; 350 В - У.Р.; 400 В - Н.Р.

отрицательный потенциал: 270 В - Н.Р.; 280 В - У.Р.; 290 В - У.Р.; 300 В - У.Р.; 300 В - У.Р.; 350 В - У.Р.; 400 В - Н.Р.

Магнитное поле напряженностью: 40 кА /м - Н.Р.; 50 кА /м - У.Р.; 100 кА /м - У.Р.; 150 кА /м - У.Р.; 200 кА /м - У.Р.; 250 кА /м - У.Р.; 300 кА /м - У.Р.; 350 кА /м - У.Р.; 400 кА /м - У.Р.; 450 кА /м - У.Р.; 500 кА /м - У.Р.; 550 кА/м - Н.Р.

Постоянное магнитное поле напряженностью: 40 кА /м - Н.Р.; 50 кА /м - У.Р.; 100 кА /м - У.Р.; 150 кА /м - У.Р.; 200 кА /м - У.Р.; 250 кА /м - У.Р.; 300 кА /м - У.Р.; 350 кА /м - У.Р.; 400 кА /м - У.Р.; 450 кА /м - У.Р.; 500 кА /м - У.Р.; 550 кА/м - Н.Р.

Электролит для деталей из титановых сплавов: водный раствор с содержанием: гидроксиламина солянокислого чистого: 2 вес. % - Н.Р.; 3 вес. % - У.Р.; 4 вес. % - У.Р.; 5 вес. % - У.Р.; 7 вес. % - У.Р.; 8 вес. % - Н.Р.; с содержанием: NaF или KF: 0,6 вес. % - Н.Р.; 0,7 вес. % - У.Р.; 0,8 вес. % - У.Р.; 0,9 вес. % - Н.Р.; температура обработки: 70°С - Н.Р.; 74;°С- У.Р.; 74°С - У.Р.; 78°С - У.Р.; 82°С - У.Р.; 86°С - У.Р.; 90°С - Н.Р.;

Электролит для деталей из никелевых сплавов: водный раствор с содержанием: сульфата аммония: 3 вес. % - Н.Р.; 4 вес. % - У.Р.; 5 вес. % - У.Р.; 7 вес. % - У.Р.; 8 вес. % - У.Р.; 9 вес. % - Н.Р.; температура обработки: 60°С - Н.Р.; 65°С - У.Р.; 70°С - У.Р.; 75°С - У.Р.; 80°С - У.Р.; 90°С - Н.Р.

По сравнению с известным способом полирования (патент РФ №2357019) производительность процесса по предлагаемому способу в среднем в 2,5-3 раза выше, а разброс значений шероховатости поверхности при обработке по предлагаемому способу составляет Ra 0,35…0,02 мкм, в то время, как по прототипу - Ra 0,65…0,03 мкм.

1. Способ электролитно-плазменной обработки детали, включающий погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на деталь электрического потенциала, отличающийся тем, что в процессе обработки вокруг обрабатываемой детали обеспечивают постоянное магнитное поле равномерной напряженности в диапазоне 50-500 кА/м по всей обрабатываемой поверхности.

2. Способ по п. 1, отличающийся тем, что на деталь подают положительный электрический потенциал от 280 до 350 В.

3. Способ по п. 1, отличающийся тем, что на деталь подают отрицательный электрический потенциал от 280 до 350 В.

4. Способ по любому из пп. 1-3, отличающийся тем, что осуществляют обработку детали из титанового сплава, при этом в качестве электролита используют водный раствор с содержанием от 3 до 7 вес.% гидроксиламина солянокислого с содержанием от 0,7 до 0,8 вес.% NaF или KF, а обработку детали ведут полированием до обеспечения шероховатости не ниже Ra=0,08-0,12 мкм при температуре от 74°С до 86°С.

5. Способ по любому из пп. 1-3, отличающийся тем, что осуществляют обработку детали из никелевого или хромоникелевого сплава, при этом в качестве электролита используют 4-8% водный раствор сульфата аммония, а обработку детали ведут полированием до обеспечения шероховатости не ниже Ra=0,08-0,12 мкм при температуре от 65°С до 80°С.

6. Способ по п. 4, отличающийся тем, что в качестве детали используют лопатку турбомашины, а магнитное поле создают электромагнитом.

7. Способ по п. 5, отличающийся тем, что в качестве детали используют лопатку турбомашины, а магнитное поле создают электромагнитом.



 

Похожие патенты:

Изобретение относится к области гальванотехники и может быть использовано в авиационном и энергетическом машиностроении, в том числе при финишной обработке лопаток и других деталей ГТД и ГТУ, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности деталей и нанесением защитных ионно-плазменных покрытий.

Изобретение относится к электрополированию лопаток моноколеса и может быть использовано в турбомашиностроении при обработке лопаток моноколеса компрессоров газотурбинных двигателей и установок.

Изобретение относится к сухому электрохимическому полированию лопаток турбомашин. Способ включает помещение лопатки в среду гранул, выполненных из анионитов, пропитанных раствором электролита, обеспечивающего электропроводность упомянутых гранул и ионный унос металла с удалением микровыступов с обрабатываемой поверхности лопатки и имеющих размеры, не превышающие минимальный размер поперечного сечения наименьшего из перфорационных отверстий.

Изобретение относится к технологии электрополирования поверхности деталей из металлов и сплавов и может быть использовано для обработки поверхностей лопаток турбомашин для повышения их эксплуатационных характеристик.

Изобретение относится к электрополированию лопаток блиска и может быть использовано в турбомашиностроении. Способ включает электрохимическое полирование лопаток в среде гранул, выполненных из анионитов, пропитанных раствором электролита, обеспечивающего электропроводность гранул и ионный унос металла лопатки с удалением микровыступов с полируемой поверхности.

Изобретение относится к области машиностроения и может быть использовано для обработки каналов, в частности внутренних поверхностей стволов артиллерийских орудий путем электрополирования.

Изобретение относится к электролитно-плазменному полированию металлических изделий, преимущественно из титановых и железохромоникелевых сплавов. Способ включает погружение детали в электролит на основе водного раствора соли плавиковой кислоты с концентрацией фтор-ионов от 0,12 моль/л до 0,23 моль/л, причем в качестве соли используют фторид аммония, или фторид натрия, или фторид калия, формирование вокруг детали парогазовой оболочки, зажигание разряда и полирование до получения заданной шероховатости, при этом температуру электролита устанавливают по формуле: Т=(-222,4)*К(F-)+122,0, где T – температура электролита, в °C, К(F-) - концентрация фтор-ионов, моль/л, (-222,4) и 122,0 – эмпирические коэффициенты, причем в процессе полирования электролит охлаждают с поддержанием рассчитанной температуры Т ± 2,5°C в диапазоне 70-95°C и концентрации фтор-ионов К (F-) ± 0,02 моль/л, а к детали прикладывают потенциал от 270 В до 290 В, используют электролит, содержащий регуляторы кислотности до рН 4,5-6,5 и неорганическую легкорастворимую соль сильного основания и сильной кислоты 0,4-0,5 моль/л.

Изобретение относится к электрополированию лопаток блисков и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности детали и нанесением защитных ионно-плазменных покрытий.
Изобретение относится к области электрополирования металлических деталей, в частности лопаток турбомашин из титановых сплавов, и может быть использовано в турбомашиностроении при полировании лопаток паровых турбин, газоперекачивающих установок и компрессоров газотурбинных двигателей.

Изобретение относится к технологии электрополирования деталей сложной формы и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин.

Изобретение относится к области машиностроения и может быть использовано для обработки сухого электрохимического полирования перфорационных отверстий в полых лопатках турбомашин.
Наверх