Способ изготовления гальванизированной и отожженной листовой стали, стойкой к жидкометаллическому охрупчиванию

Настоящее изобретение относится к способу изготовления гальванизированной и отожженной листовой стали. Способ изготовления гальванизированной и отожженной листовой стали включает следующие стадии: нанесение на листовую сталь первого покрытия, состоящего из никеля, отжиг указанной листовой стали с покрытием при температуре в диапазоне от 600 до 1200°С, нанесение на листовую сталь второго покрытия на основе цинка и легирующую термообработку для получения гальванизированной и отожженной листовой стали. Изобретение также характеризует гальванизированную и отожженную листовую сталь, полученную данным способом, а также сварное соединение, по меньшей мере одним компонентом которого является гальванизированная и отожженная листовая сталь. Гальванизированная и отожженная листовая сталь имеет низкую склонность к жидкометаллическому охрупчиванию. 3 н. и 14 з.п. ф-лы, 2 табл., 1 пр.

 

Настоящее изобретение относится к способу изготовления гальванизированной и отожженной листовой стали. Изобретение, в частности, является хорошо подходящим для использования при изготовлении механических транспортных средств.

Покрытия на цинковой основе в общем случае используют потому, что они делают возможной защиту от коррозии благодаря наличию барьерной защиты и катодной защиты. Барьерный эффект получают в результате нанесения металлического или неметаллического покрытия на поверхность стали. Таким образом, покрытие предотвращает возникновение контакта между сталью и коррозионно-активной атмосферой. Барьерный эффект не зависит от природы покрытия и подложки. Наоборот, жертвенная катодная защита имеет в своей основе тот факт, что цинк представляет собой активный металл в сопоставлении со сталью согласно последовательности значений сил ЭДС. Таким образом, в случае возникновения корродирования преимущественно будет расходоваться цинк в сопоставлении со сталью. Катодная защита является существенной в областях, в которых сталь непосредственно подвергается воздействию коррозионно-активной атмосферы, подобных обрезанным кромкам, где окружающий цинк расходуется прежде стали.

Однако, в случае проведения стадий нагревания в отношении таких листовых сталей с нанесенным покрытием из цинка, например, во время закалки под горячим прессом или контактной точечной сварки сопротивлением в стали будут наблюдаться трещины, которые инициируются от поверхности раздела сталь/покрытие. Действительно, время от времени имеет место ухудшение механических свойств вследствие присутствия трещин в листовой стали с нанесенным покрытием после проведения вышеупомянутой операции. Данные трещины возникают в следующих далее условиях: высокая температура, большая, чем температура плавления материалов покрытия; наличие контакта с жидким металлом, характеризующимся низкой температурой плавления, (такого как цинк) в дополнение к присутствию напряжения при растяжении; диффундирование и смачивание для расплавленного металла по отношению к зерну стальной подложки и межзеренным границам. Обозначение такого явления известно при использовании термина «жидко-металлическое охрупчивание» (ЖМО), что также называется при использовании термина «жидко-металлическое растрескивание» (ЖМР).

В патенте US2016/0319415 раскрывается листовая сталь, гальванизированная в результате погружения в расплав и характеризующаяся превосходной стойкостью к растрескиванию, обусловленному жидко-металлическим охрупчиванием, и включающая:

- листовую сталь основы, обладающую микроструктурой, в которой аустенитная фракция составляет 90% (площ.) и более; и

- слой гальванизации в результате погружения в расплав, сформированный на листовой стали основы,

где слой гальванизации в результате погружения в расплав включает слой сплава Fe – Zn и слой Zn, сформированный на слое сплава Fe – Zn, и слой сплава Fe – Zn имеет толщину, составляющую [(3,4 × t)/6] мкм и более, где t представляет собой толщину слоя гальванизации в результате погружения в расплав.

В данном патенте упоминается возможность предотвращения возникновения растрескивания, обусловленного охрупчиванием ЖМО, в результате подавления образования поверхностного оксида, используемого для подавления диффундирования железа (Fe), и слоя сплава Fe – Al или Fe – Al – Zn и в результате формирования слоя сплава Fe – Zn, имеющего достаточную толщину в слое гальванизации в результате погружения в расплав.

Для обеспечения адгезии при металлизации предпочтительным является дополнительное включение слоя сплава Fe – Ni непосредственно под поверхностью листовой стали основы. Говоря более конкретно, слой сплава Fe – Ni может обеспечивать получение превосходной адгезии при металлизации, поскольку MnO и тому подобное существуют в виде внутреннего оксида в результате подавления образования поверхностного оксида, такого как MnO и тому подобное, поскольку достигается обогащение по окисляющему элементу, такому как Mn и тому подобное, на поверхности слоя сплава Fe – Ni подобно тому, что имеет место для ПНД-стали. Для обеспечения достижения данного эффекта может быть сформирован слой сплава Fe – Ni вследствие наличия слоя покрытия из Ni в диапазоне от 300 мг/м2 до 1000 мг/м2. Однако, в данной патентной заявке раскрывается решение, посвященное только ПНД-сталям.

В патентной заявке US2012100391 раскрывается способ изготовления листовой стали, гальванизированной в результате погружения в расплав и характеризующейся превосходными качествами металлизации, адгезией при металлизации и свариваемостью при использовании контактной точечной сварки, при этом способ включает:

- нанесение на листовую сталь основы покрытия из Ni при степени нанесения покрытия (CNi) в диапазоне 0,1 – 1,0 г/м2, то есть, приблизительно от 11 до 112 нм;

- нагревание листовой стали с нанесенным покрытием из Ni в восстановительной атмосфере;

- охлаждение нагретой листовой стали до температуры (XS), при которой листовую сталь подают в гальваническую ванну; и

- подачу и погружение охлажденной листовой стали в гальваническую ванну, характеризующуюся эффективной концентрацией Al (CAl) в диапазоне 0,11 – 0,14 % (масс.) и температурой (ТР) в диапазоне 440 – 460°С, где температура (XS), при которой листовую сталь подают в гальваническую ванну, удовлетворяет следующему далее соотношению: CNi ⋅ (XS – TP)/2CAl = 5 – 100.

В данной патентной заявке также раскрывается листовая сталь, гальванизированная в результате погружения в расплав, в которой на поверхности раздела между листовой сталью основы и слоем гальванизации формируется фаза сплава Fe – Ni – Zn, которая составляет 1 – 20% от площади поперечного сечения слоя гальванизации.

Как это упоминается, в случае высокопрочной гальванизированной листовой стали, полученной в результате металлизации цинком на слое Ni, нанесенном в результате металлизации на листовой стали основы, при контролировании долевой концентрации площади поверхности, покрытой фазой сплава Fe – Ni – Zn, полученной на поверхности раздела между листовой сталью основы и слоем гальванизации, на конкретном уровне будут ухудшены качества металлизации, и будет предотвращено отшелушивание слоя гальванизации во время технологического процесса формования, что предполагает улучшение адгезии при металлизации листовой стали. В дополнение к этому, в технологическом процессе контактной точечной сварки, во время которого подают электрический ток от электрода через слой сплава Fe – Ni к листовой стали основы, Fe будет моментально диффундировать из листовой стали с образованием фазы сплава Fe – Ni – Zn таким образом, что легирование между электродом и слоем гальванизации будет задержано, что, таким образом, увеличивает срок службы сварочного электрода.

Однако, несмотря на улучшение технологического процесса контактной точечной сварки о каком-либо улучшении охрупчивания ЖМО не упоминается.

Вследствие наличия нескольких преимуществ на сталь наносят гальванизированное и отожженное покрытие. Однако, во время закалки под горячим прессом или контактной точечной сварки сопротивлением вышеупомянутая гальванизированная и отожженная листовая сталь с нанесенным покрытием демонстрирует наличие трещин, обусловленных охрупчиванием ЖМО.

Таким образом, цель изобретения заключается в предложении гальванизированной и отожженной листовой стали, которой не свойственны проблемы, связанные с охрупчиванием ЖМО. Оно направлено на обеспечение наличия, в частности, простого в воплощении способа в целях получения сборной конструкции, которой не свойственны проблемы, связанные с охрупчиванием ЖМО, после формовки под горячим прессом и/или сварки.

Достижения данной цели добиваются в результате предложения способа, соответствующего пункту 1 формулы изобретения. Способ также может включать любые характеристики из пунктов от 2 до 12 формулы изобретения.

Достижения еще одной цели добиваются в результате предложения гальванизированной и отожженной листовой стали, соответствующей пункту 13 формулы изобретения.

Достижения еще одной цели добиваются в результате предложения стыка, соединенного при использовании контактной точечной сварки и соответствующего пункту 15 формулы изобретения. Стык, соединенный при использовании контактной точечной сварки, также включает характеристики из пунктов от 14 до 17 формулы изобретения.

В заключение, достижения еще одной цели добиваются в результате предложения использования листовой стали или сборной конструкции, соответствующего пункту 18 формулы изобретения.

Другие характеристики и преимущества изобретения станут очевидными после ознакомления со следующим далее подробным описанием изобретения.

Обозначения «сталь» или «листовая сталь» имеют в виду листовую сталь, рулон, пластину, характеризующиеся композицией, делающей возможным достижение деталью предела прочности при растяжении, доходящего вплоть до 2500 МПа, а более предпочтительно вплоть до 2000 МПа. Например, предел прочности при растяжении является большим или равным 500 МПа, предпочтительно большим или равным 980 МПа, в выгодном случае большим или равным 1180 МПа и даже большим или равным 1470 МПа.

Изобретение относится к способу изготовления гальванизированной и отожженной листовой стали, включающему следующие далее последовательные стадии:

А. нанесение на листовую сталь первого покрытия, состоящего из никеля и имеющего толщину в диапазоне от 150 нм до 650 нм, при этом упомянутая листовая сталь характеризуется следующей далее композицией при выражении в уровнях массового процентного содержания:

0,10 < C < 0,40%,

1,5 < Mn < 3,0%,

0,7 < Si < 3,0%,

0,05 < Al < 1,0%,

0,75 < (Si + Al) < 3,0%

и исключительно необязательным образом один или несколько элементов, таких как

Nb ≤ 0,5%,

B ≤ 0,010%,

Cr ≤ 1,0%,

Mo ≤ 0,50%,

Ni ≤ 1,0%,

Ti ≤ 0,5%,

причем остаток композиции составляют железо и неизбежные примеси, получающиеся в результате разработки,

В. отжиг упомянутой листовой стали с нанесенным покрытием при температуре в диапазоне от 600 до 1200°С,

С. нанесение на листовую сталь, полученную на стадии В), второго покрытия на основе цинка и

D. легирующая термообработка для получения гальванизированной и отожженной листовой стали.

Как это представляется без желания связывать себя какой-либо теорией, во время термической обработки на стадии В) элемент Ni, демонстрирующий конкретную толщину, диффундирует в направлении листовой стали, характеризующейся вышеупомянутой конкретной композицией стали, делая возможным получение слоя сплава Fe – Ni. С другой стороны, некоторое количество Ni все еще присутствует на поверхности раздела между сталью и покрытием, что предотвращает проникновение жидких цинка или цинкового сплава в сталь во время любых стадий нагревания, представляющих собой, например, сварку. Помимо этого, во время легирующей обработки, то есть, стадии D), Ni также диффундирует в перекрывающее покрытие и, таким образом, предотвращает возникновение охрупчивания ЖМО.

Первое покрытие, состоящее из никеля, осаждают при использовании способа осаждения, известного для специалистов в соответствующей области техники. Оно также может быть осаждено при использовании способа вакуумного осаждения или электролитического осаждения. Предпочтительно его осаждают при использовании способа электролитического осаждения.

Необязательно первое покрытие может содержать примеси, выбираемые из: Fe, Cu, Mn, Si, Al и Р. Например, количество примесей составляет менее, чем 5%, предпочтительно менее, чем 3%, а более предпочтительно менее, чем 1%.

Первое покрытие, состоящее из никеля, имеет толщину в диапазоне от 150 нм до 650 нм, предпочтительно от 200 до 500 нм, более предпочтительно от 250 до 450 нм, в выгодном случае от 300 до 450 нм и, например, от 350 до 450 нм. Например, первое покрытие, состоящее из никеля, имеет толщину в диапазоне от 250 до 650 нм. Действительно, как это к своему удивлению установили изобретатели без желания связывать себя какой-либо теорией, имеет место оптимум в отношении толщины первого покрытия, где в значительной степени улучшается уменьшение охрупчивания ЖМО. Как это представляется, данная оптимальная толщина делает возможным уменьшение сварочного тока и поэтому величины подвода тепла во время контактной точечной сварки. Следовательно, получают значительное уменьшение количества трещин, образование которых обуславливается охрупчиванием ЖМО.

В выгодном случае на стадии В) термическая обработка представляет собой непрерывный отжиг. Например, непрерывный отжиг включает нагревание, томление и стадию охлаждения. Он, кроме того, может включать стадию предварительного нагревания.

Предпочтительно термическую обработку проводят в атмосфере, содержащей 1-10% Н2, при температуре точки росы в диапазоне от -60 до -30°С. Например, атмосфера содержит 1-10% Н2 при температуре точки росы в диапазоне от -40°C до -60°С.

В еще одном предпочтительном варианте осуществления на стадии В) термическую обработку проводят в атмосфере, содержащей 1-10% Н2, при температуре точки росы в диапазоне от -30 до +30°С. Например, атмосфера содержит 1-10% Н2, при температуре точки росы в диапазоне от 0°С до +20°С.

Предпочтительно на стадии С) второй слой содержит более, чем 50% цинка, более предпочтительно более, чем 75% цинка, а в выгодном случае более, чем 90% цинка. Второй слой может быть осажден при использовании любого способа осаждения, известного для специалистов в соответствующей области техники. Это может быть осуществлено при использовании способа в результате погружения в расплав, при использовании вакуумного осаждения или при использовании технологического процесса электрогальванизации.

Например, покрытие на основе цинка содержит от 0,01 до 8,0% Al, необязательно 0,2 – 8,0% Mg, при этом остаток представляет собой Zn.

В еще одном предпочтительном варианте осуществления второй слой состоит из цинка. В случае осаждения покрытия при использовании гальванизации в результате погружения в расплав уровень процентного содержания алюминия в ванне будет заключен в диапазоне от 0,10 до 0,18% (масс.).

Предпочтительно покрытие на основе цинка осаждают при использовании способа гальванизации в результате погружения в расплав. В данном варианте осуществления ванна расплава также может содержать неизбежные примеси и остаточные элементы от подающихся слитков или от прохождения листовой стали в ванне расплава. Например, необязательно примеси выбирают из Sr, Sb, Pb, Ti, Ca, Mn, Sn, La, Ce, Cr, Zr или Bi, при этом уровень массового содержания каждого дополнительного элемента уступает 0,3 % (масс.). Остаточные элементы от подающихся слитков или от прохождения листовой стали в ванне расплава могут представлять собой железо при уровне содержания, доходящем вплоть до 0,1 % (масс.).

В выгодном случае на стадии С) второй слой не содержит никель.

Предпочтительно на стадии D) легирующую термообработку проводят в результате нагревания листовой стали с нанесенным покрытием, полученной на стадии С), при температуре в диапазоне от 470 до 550°С на протяжении, например, от 5 до 50 секунд. Например, стадию D проводят при 520°С на протяжении 20 секунд.

При использовании способа, соответствующего настоящему изобретению, на гальванизированную и отожженную листовую сталь наносят покрытие из первого слоя, содержащего никель, непосредственно перекрываемое вторым слоем на основе цинка, при этом первый и второй слои легируют в результате диффундирования таким образом, чтобы получить второй слой сплава, содержащий от 8 до 50% (масс.) железа, от 0 до 25% (масс.) никеля, причем остаток представляет собой цинк. Предпочтительно на гальванизированную и отожженную листовую сталь наносят покрытие из первого слоя, содержащего никель, непосредственно перекрываемое вторым слоем на основе цинка, при этом первый и второй слои легируют в результате диффундирования таким образом, чтобы получить второй слой сплава, содержащий от 12 до 50% (масс.) железа, 1-25% (масс.) никеля, причем остаток представляет собой цинк. В выгодном случае на гальванизированную и отожженную листовую сталь наносят покрытие из первого слоя, содержащего никель, непосредственно перекрываемое вторым слоем на основе цинка, при этом первый и второй слои легируют в результате диффундирования таким образом, чтобы получить второй слой сплава, содержащий от 13 до 50% (масс.) железа, 1-25% (масс.) никеля, причем остаток представляет собой цинк.

Предпочтительно листовая сталь обладает микроструктурой, включающей 1-50% остаточного аустенита, 1-60% мартенсита и необязательно, по меньшей мере, один элемент, выбираемый из: бейнита, феррита, цементита и перлита.

В одном предпочтительном варианте осуществления листовая сталь обладает микроструктурой, включающей от 5 до 25% остаточного аустенита.

Предпочтительно листовая сталь обладает микроструктурой, включающей 1-60%, а более предпочтительно от 10 до 60% отпущенного мартенсита.

В выгодном случае листовая сталь обладает микроструктурой, включающей от 10 до 40% бейнита, при этом такой бейнит включает от 10 до 20% нижнего бейнита, от 0 до 15% верхнего бейнита и от 0 до 5% бескарбидного бейнита.

Предпочтительно листовая сталь обладает микроструктурой, включающей 1-25% феррита.

Предпочтительно листовая сталь обладает микроструктурой, включающей 1-15% неотпущенного мартенсита.

После изготовления листовой стали в целях производства некоторых деталей транспортного средства, как это известно, проводят сборку при использовании контактной точечной сварки двух листовых металлов.

Для производства стыка, соединенного при использовании контактной точечной сварки и соответствующего изобретению, сварку проводят при использовании эффективной интенсивности в диапазоне от 3 кА до 15 кА, а усилие, приложенное к электродам, находится в диапазоне от 150 до 850 дан, при этом диаметр активной лицевой поверхности упомянутого электрода находится в диапазоне от 4 до 10 мм.

Таким образом, получают стык, соединенный при использовании контактной точечной сварки, по меньшей мере, двух листовых металлов, включающих листовую сталь с нанесенным покрытием, соответствующую настоящему изобретению, при этом упомянутый стык включает менее, чем 3 трещины, имеющие размер, составляющий более, чем 100 мкм, и где наибольшая трещина имеет длину, составляющую менее, чем 300 мкм.

Предпочтительно второй листовой металл представляет собой листовую сталь или листовой алюминий. Более предпочтительно второй листовой металл представляет собой листовую сталь, соответствующую настоящему изобретению.

В еще одном варианте осуществления стык, соединенный при использовании контактной точечной сварки, включает третий листовой металл, представляющий собой листовую сталь или листовой алюминий. Например, третий листовой металл представляет собой листовую сталь, соответствующую настоящему изобретению.

Листовая сталь или стык, соединенный при использовании контактной точечной сварки, соответствующие настоящему изобретению, могут быть использованы при изготовлении деталей для механического транспортного средства.

Теперь изобретение будет разъяснено в экспериментах, проводимых только для предоставления информации. Они не являются ограничивающими.

Пример

Для всех примеров использованные листовые стали характеризуются следующей далее композицией при выражении в массовых процентах: С = 0,37%, Mn = 1,95%, Si = 1,95%, Cr = 0,35% и Мо = 0,12%.

В эксперименте 1 сталь отжигали в атмосфере, содержащей 5% Н2 и 95% N2, при температуре точки росы -45°С. Отжиг проводили при 900°С на протяжении 132 секунд. После отжига листовую сталь охлаждали до комнатной температуры. На отожженную листовую сталь наносили покрытие из цинка при использовании способа электрогальванизации.

В экспериментах от 2 до 5 на листовые стали максимальной твердости до отжига при использовании способа электролитического осаждения сначала осаждали Ni при получении толщины, соответственно, 150, 400, 650 и 900 нм. После этого листовые стали с нанесенным предварительным покрытием отжигали в атмосфере, содержащей 5% Н2 и 95% N2 при температуре точки росы -45°С. Отжиг проводили при 900°С на протяжении 132 секунд. В конце отжига листовые стали охлаждали до температуры закалки 210°С и еще раз нагревали при температуре перераспределения 410°С. Перераспределение проводили на протяжении 88 секунд, а после этого еще раз проводили нагревание вплоть до температуры гальванизации 460°С и при использовании способа нанесения покрытия в результате погружения в расплав наносили покрытие из цинка, используя ванну с жидким цинком, содержащую 0,12% (масс.) Al и выдерживаемую при 460°С. Непосредственно сразу после гальванизации проводили легирующую термообработку при 520°С на протяжении 20 секунд.

Подверженность охрупчиванию ЖМО вышеупомянутой стали с нанесенным покрытием оценивали при использовании способа контактной точечной сварки сопротивлением. С данной целью для каждого эксперимента две листовые стали с нанесенным покрытием сваривали друг с другом при использовании контактной точечной сварки сопротивлением. Тип электрода представлял собой продукт ISO Type B при диаметре 16 мм; усилие для электрода составляло 5 кН, а расход воды составлял 1,5 г/мин. Сварочный цикл был представлен в таблице 1:

Таблица 1. Технологический режим сварки

Время сварки Импульсы Импульс (с) Время охлаждения (с) Время выдержки (с)
Цикл 2 12 2 15

Характеристики стойкости к растрескиванию ЖМО также оценивали при использовании состояния с укладкой в стопку 3 слоев. Для каждого эксперимента три листовых стали с нанесенным покрытием сваривали друг с другом при использовании контактной точечной сварки сопротивлением. После этого оценивали количество трещин в 100 мкм при использовании оптического микроскопа в соответствии с представлением в таблице 2.

Таблица 2. Подробности растрескивания ЖМО после контактной точечной сварки (состояние с укладкой в стопку 3 слоев)

Эксперименты Количество трещин при расчете на один шов контактной точечной сварки (> 100 мкм) Максимальная длина трещины (мкм)
Эксперимент 1 6,8 850
Эксперимент 2 * 1,3 235
Эксперимент 3 * 2,2 215
Эксперимент 4 * 2,4 219,5
Эксперимент 5 1 399,6

*: в соответствии с настоящим изобретением.

Эксперименты 2, 3 и 4, соответствующие настоящему изобретению, демонстрируют превосходную стойкость к охрупчиванию ЖМО в сопоставлении с экспериментами 1 и 5. Действительно, количество трещин, больших, чем 100 мкм, составляет менее, чем 3, и наиболее длинная трещина имеет длину, составляющую менее, чем 300 мкм. Помимо этого, эксперименты от 2 до 4, характеризующиеся оптимальной толщиной покрытия из Ni, обеспечивают уменьшение сварочного тока. Это в результате приводит к уменьшению величины подвода тепла во время контактной точечной сварки и, таким образом, вызывает значительное уменьшение количество трещин, образование которых обуславливается охрупчиванием ЖМО.

1. Способ изготовления гальванизированной и отожженной листовой стали, включающий следующие далее последовательные стадии:

А) нанесение на листовую сталь первого покрытия, состоящего из никеля и имеющего толщину в диапазоне от 150 нм до 650 нм, при этом листовая сталь имеет следующий состав, мас.%:

0,10 < C < 0,40,

1,5 < Mn < 3,0,

0,7 < Si < 3,0,

0,05 < Al < 1,0,

0,75 < (Si + Al) < 3,0

и необязательно по меньшей мере один из таких компонентов, как

Nb ≤ 0,5,

B ≤ 0,010,

Cr ≤ 1,0,

Mo ≤ 0,50,

Ni ≤ 1,0,

Ti ≤ 0,5,

причем остаток состава составляют железо и неизбежные примеси,

В) отжиг указанной листовой стали с покрытием при температуре в диапазоне от 600 до 1200°С,

С) нанесение на листовую сталь, полученную на стадии В), второго покрытия на основе цинка и

D) легирующую термообработку для получения гальванизированной и отожженной листовой стали.

2. Способ по п. 1, в котором на стадии А) первое покрытие имеет толщину в диапазоне от 200 до 500 нм.

3. Способ по п. 2, в котором на стадии А) первое покрытие имеет толщину в диапазоне от 250 до 450 нм.

4. Способ по любому из пп. 1-3, в котором на стадии В) термическая обработка представляет собой непрерывный отжиг.

5. Способ по любому из пп. 1-4, в котором на стадии В) термическую обработку проводят в атмосфере, содержащей 1-10% Н2, при температуре точки росы в диапазоне от -60 до -30°С.

6. Способ по любому из пп. 1-4, в котором на стадии В) термическую обработку проводят в атмосфере, содержащей 1-10% Н2, при температуре точки росы в диапазоне от -30 до +30°С.

7. Способ по любому из пп. 1-6, в котором на стадии С) второй слой содержит более чем 50% цинка.

8. Способ по п. 7, в котором на стадии С) второй слой содержит более чем 75% цинка.

9. Способ по п. 8, в котором на стадии С) второй слой содержит более чем 90% цинка.

10. Способ по любому из пп. 1-9, в котором второй слой не содержит никеля.

11. Способ по п. 10, в котором на стадии С) второй слой состоит из цинка.

12. Способ по любому из пп. 1-11, в котором на стадии D) легирующую термообработку проводят в результате нагревания листовой стали с нанесенным покрытием, полученной на стадии С), при температуре в диапазоне от 470 до 550°С.

13. Гальванизированная и отожженная листовая сталь, полученная способом по любому из пп. 1-12, имеющая покрытие, включающее в себя первый слой, содержащий никель, и второй слой на основе цинка, непосредственно нанесенный поверх первого слоя, при этом первый и второй слои легированы посредством диффундирования таким образом, что второй слой сплава содержит от 8 до 50 мас.% железа и от 0 до 25 мас.% никеля, причем остаток представляет собой цинк.

14. Сварное соединение, образованное точечной контактной сваркой по меньшей мере двух листов металла, по меньшей мере один из которых представляет собой гальванизированную и отожженную листовую сталь по п. 13, при этом сварное соединение содержит менее трех трещин, имеющих размер более 100 мкм, причем наибольшая трещина имеет длину менее 300 мкм.

15. Сварное соединение по п. 14, в котором второй лист металла представляет собой листовую сталь или листовой алюминий.

16. Сварное соединение по п. 15, в котором второй листовой металл представляет собой листовую сталь по п. 13 или листовую сталь, полученную способом по любому из пп. 1-12.

17. Сварное соединение по любому из пп. 14-16, содержащее третий лист металла, представляющий собой листовую сталь или листовой алюминий.



 

Похожие патенты:

Изобретение относится к металлургической промышленности, а именно к непрерывному способу производства стальной полосы, и может быть использовано на металлургических предприятиях при производстве стальной полосы с покрытием, обладающей повышенной коррозионной стойкостью.

Изобретение относится к области металлургии. Для повышения механических свойств листовой стали способ производства листовой стали включает следующие последовательные стадии: получение холоднокатаной листовой стали, при этом химический состав стали включает в мас.%: 0,15% ≤ С ≤ 0,23%, 2,0% ≤ Mn ≤ 2,8%, 1,0% ≤ Si ≤ 2,1%, 0,02% ≤ Al ≤ 1,0%, причем 1,7% ≤ Si + Al ≤ 2,1%, 0 ≤ Nb ≤ 0,035%, 0 ≤ Mo ≤ 0,3%, 0 ≤ Cr ≤ 0,4%, при этом остаток представляет собой Fe и неизбежные примеси, отжиг листовой стали при температуре отжига TA таким образом, чтобы получить структуру, содержащую по меньшей мере 65% аустенита и вплоть до 35% межкритического феррита, закалка листа при скорости охлаждения, составляющей по меньшей мере 20°С/сек, от температуры, составляющей по меньшей мере 600°С, вплоть до температуры закалки QT, заключенной в пределах от Ms - 170°С до Ms - 80°С, нагревание листа вплоть до температуры распределения РТ в диапазоне от 350°С до 450°С и сохранение листа при данной температуре в течение времени распределения Pt, заключенного в пределах от 80 сек до 440 сек, незамедлительное охлаждение листа до комнатной температуры, причем листовая сталь обладает конечной микроструктурой, состоящей в поверхностных долях из: от 40% до 70% отпущенного мартенсита, от 7% до 15% остаточного аустенита, от 15% до 35% феррита, самое большее, 5% свежего мартенсита, самое большее, 15% бейнита.

Изобретение относится к устройству для обработки металлической полосы после того, как она выходит из резервуара для нанесения покрытия с жидким покровным материалом, например цинком.

Изобретение относится к области металлургии, а именно к способу производства холоднокатаного листового проката из высокопрочных низколегированных сталей, используемого в автомобильной промышленности.

Изобретение относится к нанесению покрытия на металлическую полосу с помощью устройства нанесения покрытия. В устройстве нанесения покрытия полоса проходит сначала через емкость нанесения покрытия с жидким покровным средством, а затем через сопловое устройство снятия для снятия избыточного покровного средства с поверхности полосы.

Изобретение относится к листовой стали, пригодной для использования в производстве автомобилей. Химический состав листовой стали с покрытием: 0,17% ≤ углерод ≤ 0,24%, 1,9% ≤ марганец ≤ 2,2%, 0,5% ≤ алюминий ≤ 1,2%, 0,5% ≤ кремний ≤ 1%, 0,05% ≤ хром ≤ 0,2%, 0,015% ≤ ниобий ≤ 0,03%, фосфор ≤ 0,03%, сера ≤ 0,004% и по усмотрению 0,005% ≤ титан 0,05%, 0,001% ≤ молибден 0,05%, остальное железо и неизбежные примеси в результате обработки.

Изобретение относится к области металлургии, а именно к горячештампованной стали для изготовления конструкционных элементов автомобиля. Горячештампованная сталь содержит базовый материал и плакирующий слой.

Изобретение относится к области металлургии, в частности к изготовлению брикета для легирования расплава цинка, содержащего легирующий материал, флюс и оболочку. Может применяться для горячего цинкования изделий или заготовок из стали методом погружения их в расплав цинка.

Изобретение относится к обработке формованных изделий с железной или стальной поверхностью с содержанием углерода до 2,06 мас.% перед холодным формованием. В способе формованное изделие приводят в контакт с водной кислотной композицией для образования конверсионного слоя в качестве разделительного слоя.

Изобретение относится к производству листовой стали с нанесенным покрытием, характеризующейся пределом прочности при растяжении TS, составляющим, по меньшей мере, 450 МПа, и полным относительным удлинением ТЕ, составляющим, по меньшей мере, 17%.

Группа изобретений относится к точечной сварке сопротивлением листовых сталей. Толщина свариваемых листов (th) составляет от 0,5 до 3 мм.
Наверх