Способ получения нанокапсул хлорамфеникола (левомицетина)

Изобретение относится к области медицины, фармацевтики и ветеринарии и может быть использовано для получения нанокапсул хлорамфеникола (левомицетина). Способ получения нанокапсул хлорамфеникола заключается в том, что в суспензию каппа-каррагинана в метаноле и 0,01 г препарата Е472с, используемого в качестве поверхностно-активного вещества, добавляют порошок хлорамфеникола при перемешивании 700 об/мин. Далее добавляют хлороформ, полученную суспензию нанокапсул отфильтровывают и сушат. Массовое соотношение ядро : оболочка в полученных нанокапсулах составляет 1:1, 1:2 или 1:3. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 3 пр.

 

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155 МПК А61K 047/02, А61K 009/16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2076765 МПК B01D 9/02, Российская Федерация, опубликован 10.04.1997, предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.

Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.

В пат. 2101010 МПК А61K 9/52, А61K 9/50, А61K 9/22, А61K 9/20, А61K 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100 - 800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.

В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, т. LII, №1, с. 48-57, представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина рН водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.

Недостатком предложенного способа получения микрокапсул является сложность процесса, а отсюда плавающий выход целевых капсул.

В пат. WO/2010/076360 ES МПК B01J 13/00; А61K 9/14; А61K 9/10; А61K 9/12, опубликован 08.07.2010, предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастиц с существенно сфероидальной морфологи.

Недостатком предложенного способа является сложность и длительность процесса.

В пат. 20110223314 МПК B05D 7/00 20060101 B05D 007/00, В05С 3/02 20060101 В05С 003/02; В05С 11/00 20060101 В05С 011/00; B05D 1/18 20060101 B05D 001/18; B05D 3/02 20060101 B05D 003/02; B05D 3/06 20060101 B05D 003/06 от 10.03.2011 US описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.

Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нано-капсул хлорамфеникола в каппа-каррагинане, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул хлорамфеникола, отличающимся тем, что в качестве оболочки нанокапсул используется каппа-каррагинан, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хлороформа.

Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул хорамфеникола каппа-каррагинана, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - хлороформа.

Результатом предлагаемого метода являются получение нанокапсул хлорамфеникола в каппа-каррагинане при 25°С в течение 15 минут. Выход нанокапсул составляет 100%.

ПРИМЕР 1. Получение нанокапсул хлорамфеникола в каппа-каррагинане, соотношение ядро : оболочка 1:3

В суспензию 0,6 г каппа-каррагинана в метаноле и 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества, небольшими порциями добавляют 0,2 г порошка хлорамфеникола при перемешивании 700 об/мин. Затем по каплям добавляют 6 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 0,8 г белого порошка. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул хлорамфеникола в каппа-каррагинане, соотношение ядро : оболочка 1:1

В суспензию 0,5 г каппа-каррагинана в метаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества, добавляют 0,5 г порошка хлорамфеникола при перемешивании 700 об/мин. Затем по каплям добавляют 6 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 1 г белого порошка. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул хлорамфеникола в каппа-каррагинане, соотношение ядро : оболочка 1:2

В суспензию 1,6 г каппа-каррагинане в метаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества, добавляют 0,8 г порошка хлорамфеникола при перемешивании 700 об/мин. Затем по каплям добавляют 6 мл хлороформа. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 2,4 г белого порошка. Выход составил 100%.

Способ получения нанокапсул хлорамфеникола в каппа-каррагинане, характеризующийся тем, что в суспензию каппа-каррагинана в метаноле и 0,01 г препарата Е472с, используемого в качестве поверхностно-активного вещества, добавляют порошок хлорамфеникола при перемешивании 700 об/мин, затем добавляют хлороформ, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро : оболочка в нанокапсулах составляет 1:3, или 1:1, или 1:2.



 

Похожие патенты:

Изобретение относится к способу получения изделий сферической формы на основе диоксида циркония с трансформируемой тетрагональной кристаллической фазой и может быть использовано для изготовления пористых износостойких деталей или носителя катализаторов и сорбентов, а также фильтра для очистки выхлопных газов и сточных вод.

Изобретение касается способа детекции газов в воздухе, в частности паров воды. Предложена модель сенсора для детекции газа нового типа на основе микроструктурированного оптического волокна (МОВ) с полой сердцевиной, модифицированного субмикронными (нанометровыми) частицами, работающего по принципу детекции изменения оптических характеристик при прохождении газа через МОВ.

Изобретение относится к способу получения геля оксида алюминия. Полученный в результате гель оксида алюминия затем можно формовать в виде шариков и использовать в качестве подложки катализатора в процессах олигомеризации или каталитического риформинга, а также в качестве адсорбента.

Изобретение относится к технологии получения полупроводниковых приборов и может найти применение в промышленном производстве светоизлучающих устройств и фоточувствительных элементов.

Изобретение относится к материаловедению и может быть использовано для изготовления сенсорных и электронных устройств, электродов для источников тока и микротопливных элементов, молекулярных сканирующих мембран и мембран для биологических и медицинских применений.

Группа изобретений относится к области химии, а именно к технологии легирования диоксида титана анатазной аллотропной модификации наночастицами благородных металлов для создания высокоэффективного фотокатализатора, предназначенного для фотокаталитических реакций окисления органических соединений в мягких условиях.

Использование: для генерации или детектирования электромагнитных волн терагерцевого диапазона. Суть изобретени заключается в том, что изготовление фотопроводящей антенны для генерации или детектирования электромагнитных волн терагерцевого диапазона заключается в нанесении диэлектрического слоя на поверхность фотопроводящего слоя, нанесении фоторезиста и последующем формировании маски окон в диэлектрике, жидкостном травлении окон по маске, нанесении фоторезиста и формировании маски для металлизации антенны, термическом нанесении металлизации фотопроводящей антенны с последующим удалением остатков металла методом "взрывом", при этом металлизация фотопроводящей антенны наносится на диэлектрический слой, которым покрыта поверхность фотопроводящего слоя, а электрический контакт металлизации с полупроводником осуществляется через предварительно вскрытые окна в диэлектрическом слое.

Изобретение относится к области сканирующей зондовой микроскопии и может быть использовано при исследовании микрорельефа отражающих поверхностей, например, в кристаллографии, метрологии, при изучении высокомолекулярных соединений, а также для локальных исследований микрообъектов в виде наноструктурированных материалов и биологических объектов.

Изобретение относится к получению ультрадисперсного порошка оксида алюминия, используемого для формирования нанорельефа в микроканале, в качестве гидрофильного покрытия, подложки для катализаторов.
Изобретение относится к области медицины, фармацевтики и пищевой промышленности и может быть использовано для получения нанокапсул сухого экстракта алоэ. Способ получения нанокапсул сухого экстракта алоэ заключается в том, что сухой экстракт алоэ добавляют в суспензию ксантановой камеди в изогептане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 700 об/мин.
Изобретение относится к области медицины, фармацевтики и пищевой промышленности и может быть использовано для получения нанокапсул сухого экстракта алоэ. Способ получения нанокапсул сухого экстракта алоэ заключается в том, что сухой экстракт алоэ добавляют в суспензию ксантановой камеди в изогептане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 700 об/мин.
Наверх