Ингибитор гидратообразования и коррозии на основе сульфированного хитозана

Изобретение относится к области защиты металлов от коррозии и может найти применение в нефтегазовой отрасли в процессах добычи, подготовки и транспортировки углеводородного сырья для предотвращения образования газовых гидратов и коррозии. Соединение на основе биоразлагаемого хитозана формулы (I), обладающее способностью ингибировать образование газовых гидратов и коррозию. 1 ил., 2 табл.

 

Изобретение относится к химии полимерных соединений, а именно - к новому полимерному соединению на основе производного хитозана формулы (I), обладающему способностью ингибировать образование газовых гидратов и коррозию. Соединение может найти применение в нефтегазовой отрасли в процессах добычи, переработки и транспортировки углеводородного сырья для предотвращения образования газовых гидратов и коррозии.

В природном газе, газовом конденсате и нефти присутствуют такие соединения, как углеводороды алканового ряда С1-С4, диоксид углерода, сероводород, азот, которые при определенной температуре и давлении могут образовывать с водой соединения включения - газовые гидраты (клатраты). Газовые гидраты в процессе добычи и транспортировки углеводородов образуются при надлежащих термобарических условиях, например в стволе скважин, трубопроводах и оборудовании при внедрении низкомолекулярных соединений в полости кристаллической решетки, формируемой молекулами воды посредством водородных связей. Данные образования в процессе агломерации образуют гидратные пробки, препятствующие свободному потоку флюидов, тем самым способствуя различного рода техногенным авариям. Помимо этого, сероводород и диоксид углерода в присутствии воды способны вызывать коррозию трубопровода или других контактных стальных элементов, используемых при добыче, транспортировке, хранении и переработке углеводородов, что снижает срок их эксплуатации (трубопроводов и т.д.) и также может приводить к авариям.

Среди доступных методов предотвращения закупорки трубопроводов, таких как снижение давления, повышение температуры и дегидратация, химическая обработка ингибиторами является наиболее экономически эффективным методом [Farhadian, A., Kudbanov, A., Varfolomeev, M. A., Dalmazzone, D. (2019). Waterborne polyurethanes as a new and promising class of kinetic inhibitors for methane hydrate formation. Scientific Reports, 9, 9797; Kelland, M. A. (2014). Production chemicals for the oil and gas industry. Boca Raton, FL: CRC.]. Однако одновременное введение различных реагентов (например, ингибиторов гидратообразования, коррозии, солеотложения и д.р.) в поток флюидов зачастую способствует снижению их целевых свойств или появлению побочных явлений, обусловленных, в том числе, взаимодействием данных реагентов между собой или с другими компонентами потока. Так, ингибиторы образования газогидратов увеличивают скорость коррозии, в то время как ингибиторы коррозии обычно способствуют зарождению гидратов, особенно в глубоководных условиях, что в конечном счете снижает их эффективность действия. Кроме того, наличие ионов электролита в пластовой воде может усугубить ситуацию, вызвав эксплуатационные проблемы, такие как появление отложений или снижение эффективности ингибиторов гидратообразования. Введение в поток большого количества нефтепромысловых реагентов требует более мощной инфраструктуры (дополнительные резервуары для хранения, инжекционные насосы и распределительные трубопроводы) и сложного процесса регенерации введенных добавок [Qasima, А., Khana, M.S., Lala, B., Shariffa A.M. (2019). A perspective on dual purpose gas hydrate and corrosion inhibitors for flow assurance. Journal of Petroleum Science and Engineering 183, 106418].

Следует также отметить, что снижение количества используемых в области нефтехимии реагентов и их номенклатуры, а также переход на биоразлагаемые и малотоксичные соединения может благоприятно сказаться на окружающей среде и здоровье человека. Данный аспект на дату представления заявочных материалов также является актуальным.

Таким образом, разработка эффективных, биоразлагаемых и безопасных нефтепромысловых реагентов двойного назначения - ингибиторов газовых гидратов и ингибиторов коррозии - представляется на сегодняшний день актуальным направлением развития нефтепромысловой химии. Получение соединений, обладающих комплексным действием, обеспечивает возможность существенного снижения экономических затрат, направленных на обеспечение стабильности потока углеводородов, при этом эти соединения значительно расширяют арсенал средств указанного назначения.

Следует иметь в виду, что ингибиторы гидратообразования применяют в концентрациях от 0.25% до 2% по массе, в то время как ингибиторы коррозии используются в меньших концентрациях. Однако принимая во внимание задачу заявленного технического решения - создание биоразлагаемого реагента именно бифункционального действия - необходимо понимать, что определяющим критерием будет являться способность ингибировать гидратообразование, т.е. тот эффект, который достигается более высокими концентрациями. Таким образом, при исследовании уровня техники по двум данным направлениям , по мнению заявителя надо ориентироваться, прежде всего, на ингибиторы газовых гидратов.

Из исследованного заявителем уровня техники выявлены термодинамические ингибиторы гидратообразования (далее THI), такие как метанол, гликоли [RU 2049957], и ингибиторы гидратообразования низкой дозировки (далее LDHI), которые представляют собой две основные категории ингибиторов, широко применяющиеся для предотвращения гидратообразования. LDHI делятся на кинетические ингибиторы гидратообразования (далее KHI) [RU 2137740, RU 2436806, RU 2504642, RU 2481375] и антиагломеранты (далее AA) [US 6444852, US 7958939, СА 2983402]. Они отличаются друг от друга механизмом действия. При этом, KHI пролонгируют время нуклеации (образования зародышей кристаллов гидрата) и снижают скорость роста кристаллов гидрата, в то время как АА противодействуют слипанию (агломерации, агрегации) частиц гидрата с образованием гидратной суспензии, не способной формировать гидратные пробки [Haghi, R. K., Yang, J., & Tohidi, B. (2018). Integrated near infrared and ultraviolet spectroscopy techniques for determination of hydrate inhibitors in the presence of NaCl. Industrial & Engineering Chemistry Research, 57(34), 11728-11737.; Kelland, M. A. (2006). History of the development of low dosage hydrate inhibitors. Energy Fuels, 20(3), 825-847.; Perrin, A., Musa, O. M., & Steed, J. W. (2013). The chemistry of low dosage clathrate hydrate inhibitors. Chemical Society Reviews, 42(5), 1996-2015.]. Главными недостатками THI является их высокая действующая концентрация (20 - 40% по массе) и, как следствие, низкая безопасность для человека и окружающей среды за счет своей горючести и токсичности.

Помимо этих факторов, в качестве отрицательной стороны использования THI можно обозначить высокие материально-технические затраты (большие резервуары, рециркуляция этих растворителей) [Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids. http://dx.doi.org/10.1016/B978-0-12-803734-8.00013-8 © 2015 Elsevier Inc.].

Известен смесевой термодинамический ингибитор для борьбы с гидратообразованием при добыче и транспорте газа, включающий мочевину (50-60% мас.), глицерин (30-40% мас.) и воду (10-20% мас.) (SU 976035, 1982). Недостатки известного ингибитора заключаются в высокой вязкости, а также в недостаточной ингибирующей способности, обусловленной низкой антигидратной активностью компонентов состава.

Большинство AA представляют из себя заряженные молекулы, состоящие из длинноцепочечного алкильного заместителя (липофильный фрагмент) и фрагмента ониевой соли (аммониевой или фосфониевой), и по своей природе являются поверхностно-активными веществами, например, тетрабутиламмония хлорид, трибутилдециламмония бромид и т.д. [Method for inhibiting the plugging of conduits by gas hydrates, US 5648575]. Данные соединения обладают отличной способностью ингибировать агломерацию газовых гидратов, однако, относясь к классу четвертичных аммониевых и фосфониевых солей, проявляют ярко выраженное токсическое действие на эукариотические и прокариотические клетки живых организмов, разрушая целостность их мембраны [Антисептическое лекарственное средство, RU 2641309 С1]. Кроме того, для эффективной работы антиагломерантов обязательно требуется наличие жидкой углеводородной фазы (нефть, конденсат) для образования и стабилизации эмульсии обратного типа (вода в масле). Необходимость разрушения эмульсии при использовании антиагломерантов значительно усложняет технологический процесс [RU 2 705 645 C1]. АА считают неэффективными при высоком объеме водной фракции (~60 об.%) в жидкой фазе [RU 2 715 582 C2].

Наиболее интересным выглядит класс кинетических ингибиторов гидратообразования KHI. Коммерческие KHI обычно представляют собой водорастворимые низкомолекулярные полимеры, такие как гомо- или сополимеры N-винилпирролидона и N-винилкапролактама, активные группы которых задерживают зародышеобразование и рост кристаллов гидратов. [Qasima, А., Khana, M.S., Lala, B., Shariffa A.M. (2019). A perspective on dual purpose gas hydrate and corrosion inhibitors for flow assurance. Journal of Petroleum Science and Engineering 183, 106418; Патент РФ 2 715 582 C2].

Поливинилкапролактам Поливинилпирролидон

Известны сополимеры винилпирролидона и винилкапролактама с производными акриловой и метакриловой кислот с целью усиления ингибирующих образование гидратов свойств [Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids. http://dx.doi.org/10.1016/B978-0-12-803734-8.00013-8 © 2015 Elsevier Inc.].

Недостаток KHI заключается в их низкой концентрации в водной фазе (до 2% мас.), что не позволяет понизить равновесную температуру кристаллизации льда и разложения газовых гидратов, т.е. влияние на термодинамику процесса отсутствует. Этот факт накладывает ограничение на их использование в технологических процессах при низких температурах, когда требуется одновременное предотвращение образования льда и газовых гидратов. KHI становятся неэффективными (индукционный период приближается к нулевому) при высоких значениях степени переохлаждения (выше 12 °C). Кроме того, KHI значительно хуже ингибируют образование гидратов кубической структуры I (метан, углекислый газ, сероводород) по сравнению с гидратами кубической структуры II (углеводородные газовые смеси) [RU 2 705 645 C1].

Также известен кинетический ингибитор гидратообразования Luvicap EG, выпускаемый компанией BASF [Wu R. et al. Methane-propane mixed gas hydrate film growth on the surface of water and Luvicap EG solutions // Energy & Fuels. - 2013. - т. 27. - №. 5. - c. 2548-2554]. Данный состав представляет собой 40% раствор поли(N-винилкапролактама) в моноэтиленгликоле. Недостатками указанного ингибитора являются недостаточно низкая температура застывания, составляющая минус 12,9 °C, что не позволяет использовать данный состав при более низких температурах, высокая динамическая вязкость (16700 мПа⋅с при 20 °C), что значительно затрудняет перекачку и дозирование данного состава. Кроме того, данный состав не обеспечивает существенной задержки образования гидратной фазы при высоких значениях степени переохлаждения (выше или равно 12 °C) [RU 2705645 C1].

Известен способ замедления образования газовых гидратов [RU 2126513]. В качестве кинетического ингибитора предлагается использовать водорастворимое высокомолекулярное соединение, образованное из производного акриламида, в котором атомы водорода при азоте замещены на группы R1 и R2:

При этом R1 является углеводородным радикалом с числом атомов углерода от 1 до 10, числом гетероатомов, выбранных из группы, состоящей из азота, кислорода, серы и их комбинаций от 0 до 4; R2 является атомом водорода или углеводородным радикалом с числом атомов углерода от 1 до 10, числом гетероатомов, выбранных из группы, состоящей из азота, кислорода, серы и их комбинаций от 0 до 4. R1 и R2 могут быть связаны в цикл, содержащий от 3 до 10 атомов углерода и указанное количество гетероатомов от 0 до 4, выбранных из группы, содержащей водород, кислород, серу и их комбинации.

Недостатком известного способа является сложность синтеза используемых высокомолекулярных соединений, связанная с использованием материалоемкой установки, необходимостью постоянной продувки колбы во время синтеза инертным газом, использованием специально подготовленных абсолютизированных органических растворителей. Максимально достигнутые величины переохлаждения, характеризующие антигидратную активность предложенных полимеров при их концентрации 0,5% масс., в известном способе составляют 14 °С, что налагает ограничения на использование описываемых ингибиторов при более высоких значениях переохлаждения [RU 2 436 806 C1].

Известен способ ингибирования образования гидратов [RU 2134678]. В качестве кинетического ингибитора предлагается использовать водорастворимый сополимер N-метил-N-винилацетамид/виниллактам общей формулы:

где n=1-3; сумма x и у представляет собой среднее число, достаточное для получения средней молекулярной массы около 1000-6000000.

Известному техническому решению присущи указанные выше недостатки, связанные со сложностью получения используемого высокомолекулярного соединения. Недостатком также является ограничение максимальной величины переохлаждения 16,7°С предложенных полимеров при их концентрации 0,5% масс [RU 2 436 806 C1].

Известен кинетический ингибитор гидратообразования в виде композиции соединений, содержащий четвертичное аммониевое соединение, водорастворимый полимер, оксиэтилированный и/или оксипропилированный амин, оксиэтилированный и/или оксипропилированный диол, алифатический спирт с числом атомов углерода от 5 до 6, метанол или этанол, или их смесь с водой при различных соотношениях компонентов [RU 2 677 494 C1]. Недостатком известного технического решения является высокое (до 50 % масс.) содержание аммониевых солей, которые, как было указано выше, снижают безопасность данной композиции для человека и окружающей среды.

При этом важно отметить тот факт, что в целом для KHI присуща проблема низкой биодеградации в следствие их структурных особенностей, что делает данный класс ингибиторов гидратообразования экологически неприемлемым [US 8 895478; Sheng, Q., Silveira, K. C. Da, Tian, W., Fong, C., Maeda, N., Gubner, R., & Wood, C. D. (2017). Simultaneous Hydrate and Corrosion Inhibition with Modified Poly(vinyl caprolactam) Polymers. Energy Fuels, 31(7), 6724-6731].

В качестве же ингибиторов двойного назначения на дату представления заявочных материалов заявителем выявлены ионные жидкости, аминокислоты и биополимеры (в том числе модифицированные) [Qasim, А., Khan, M.S., Lal, B., Shariff A.M. (2019). A perspective on dual purpose gas hydrate and corrosion inhibitors for flow assurance. Journal of Petroleum Science and Engineering, 183, 106418].

Ионные жидкости, несмотря на отличную способность ингибировать образование газогидратов, практически не используются в промышленных процессах, за редким исключением. Это связано с чрезвычайно высокой стоимостью технологии их получения [Haidera, J., Saeed, S., Qyyum, M.A., Kazmi, B., Ahmad, R., Muhammad, A., Lee M. (2020). Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects. Renewable and Sustainable Energy Reviews, 123, 109771]. Таким образом, их использование в качестве ингибиторов гидратообразования также экономически нецелесообразно.

Также заявителем выявлено, что большинство ионных жидкостей относятся к токсичным материалам [Pretti, C., Chiappe, C., Pieraccini, D., Gregori, M., Abramo, F., Monnia, G., Intorrec L. (2006). Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chemistry, 8, 238-240] и одновременно обладают низкой биоразлагаемостью [Gathergood, N., Garcia, M.T., Scammells P.J. (2004). Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chemistry, 6, 166-175; Garcia, M.T., Gathergood, N., Scammells P.J. (2005). Biodegradable ionic liquids Part II. Effect of the anion and toxicology. Green Chemistry, 7, 9-14].

Аминокислоты глицин, аланин, валин, лейцин, изолейцин, тирозин, серин, аргинин и лизин были изучены с точки зрения ингибиторов гидратов метана и углекислого газа [Qasim, А., Khan, M.S., Lal, B., Shariff A.M. (2019). A perspective on dual purpose gas hydrate and corrosion inhibitors for flow assurance. Journal of Petroleum Science and Engineering, 183, 106418]. Однако они недостаточно эффективны и стабильны в растворах, а также способствуют росту микроорганизмов, поскольку являются для них питательным субстратом [Otake, T., Taniguchi, T., Furukawa, Y., Kawamura, F., Nakazawa, H., Kakegawa T. (2011). Stability of Amino Acids and Their Oligomerization Under High-Pressure Conditions: Implications for Prebiotic ChemistryAstrobiology, 11, 799-813; Parr, M.D., Bertch, K.E., Rapp, R.P. (1985). Amino acid stability and microbial growth in total parenteral nutrient solutions. American journal of hospital pharmacy, 42, 2688-2691].

Из биополимеров в качестве ингибиторов двойного назначения выявлен достаточно узкий ряд соединений, а именно хитозан, пектин, крахмал и полиаспарагиновую кислоту (нативные биополимеры) [Qasim, А., Khan, M.S., Lal, B., Shariff A.M. (2019). A perspective on dual purpose gas hydrate and corrosion inhibitors for flow assurance. Journal of Petroleum Science and Engineering, 183, 106418].

В целом, нативные биополимеры обладают достаточно низкой способностью ингибировать образование газогидратов и коррозию, а также часто малорастворимы в воде. Заявителем выявлено, что включение сульфонатных групп в основную цепь хитозана улучшает его растворимость в воде [Rwei, S.-P., Lien, C.-C. (2014). Synthesis and viscoelastic characterization of sulfonated chitosan solutions. Colloid and Polymer Science, 292, 785-795]. Однако исследований по способности данного полимера ингибировать образование гидратов и коррозию не проводилось. Помимо этого, следует отметить, что в рассматриваемой работе использовали хитозан с молекулярной массой в узком диапазоне около 50000 Да и степенью деацетилирования около 90%. Рассматриваемая молекула имеет в своем составе структурные фрагменты, присущие заявляемому соединению общей формулы I.

Однако, в целом, описанное выше соединение нельзя рассматривать в качестве аналога заявленного технического решения, по причине отличия по химической структуре и составу.

Таким образом, заявителем проведен анализ российских и зарубежных патентных баз данных, научной литературы, Интернет-ресурсов, и при этом не выявлены аналоги к заявленному техническому решению как по химической структуре, так и по составу.

Вместе с тем, заявителем выявлены соединения, которые являются аналогами заявленного технического решения по назначению, но которые, однако, обладают указанными выше недостатками, а именно - недостаточно высокой эффективностью, биоразлагаемостью, безопасностью или же высокой стоимостью производства при использовании по назначению.

Задачей и техническим результатом заявленного технического решения является создание принципиально нового нефтехимического реагента - а именно нового сульфированного хитозана формулы (I), способного одновременно ингибировать как гидратообразование, так и коррозию, что в конечном варианте обеспечивает расширение линейки нефтепромысловых реагентов указанного назначения, снижения экономических затрат и минимизации нагрузки на окружающую среду.

Сущностью заявленного технического решения является соединение на основе биоразлагаемого хитозана формулы (I) в качестве ингибитора образования газовых гидратов и коррозии:

Заявленное техническое решение иллюстрируется Фиг.1 - Фиг.3:

На Фиг.1 представлена Схема 1 получения соединения формулы (I).

На Фиг.2 представлена Таблица 1, где приведены данные ингибирования образования газогидрата в присутствии соединения I, в присутствии исходного хитозана и для чистой воды.

На Фиг.3 представлена Таблица 2, где приведены данные ингибирования коррозии в присутствии соединения I, в присутствии исходного хитозана и без них.

Задача решается, и заявленный технический результат достигается синтезом соединения формулы (I), обладающего способностью ингибировать образование газовых гидратов и ингибировать коррозию.

Соединение формулы (I) получено согласно Схеме 1, представленной на Фиг.1.

Характеристики соединения представлены в примерах конкретного выполнения заявленного технического решения.

Исходными продуктами, примененными в примере 1 являются низкомолекулярный образец хитозана (50-190 кДа) со степенью деацетилирования 75-85% (был приобретен у Sigma Aldrich), уксусная кислота и 1,3-пропансультон (были приобретены у Merck Chemical Co). Реакция проводится в деионизированной воде.

Структура соединения подтверждена методами 1Н и 13С ЯМР-спектроскопии. Спектры ЯМР регистрировали на приборе Bruker AVANCE-400. Химический сдвиг определяли относительно сигналов остаточных протонов дейтерированной воды (1H и 13С).

Примеры конкретного выполнения заявленного технического решения

Пример 1. Получение сульфированного хитозана (I).

10 г хитозана смешивают с 100 мл 2 % мас. раствора уксусной кислоты и перемешивают при комнатной температуре в течение 2 часов до получения гомогенного раствора. Затем по каплям добавляют 3.5 мл 1,3-пропансультона и смесь перемешивают в течение 7 часов при 70 °С. После этого реакционную смесь охлаждают до комнатной температуры и для осаждения продукта выливают ее в холодный ацетон. Выпавший продукт отделяют фильтрованием. Избыток 1,3-пропансультона удаляют промывкой метанолом и продукт сушат в вакууме при комнатной температуре с получением сульфированного хитозана (I).

1H NMR (400 MHz, D2O) δ 5.12 - 5.06 (м, 8H), 4.95 - 4.79 (м, 20H), 4.77 (с, 6H), 3.81 (с, 3H), 3.67 (с, 3H), 3.62 (с, 3H), 3.57 - 3.42 (м, 12H), 3.10 - 3.04 (м, 2H), 2.83 (кв, J = 7.3 Hz, 9H), 1.99 - 1.92 (м, 2H), 1.80 (с, 1H), 1.68 (г, J = 7.5 Hz, 10H), 1.56 (г, J = 6.8 Hz, 10H). 13C NMR (101 MHz, D2O) δ 97.40, 76.06, 74.64, 69.77, 61.00, 59.80, 55.61, 50.63, 30.12, 27.40, 20.59.

Пример 2. Исследование способности сульфированного хитозана (I) ингибировать образование газовых гидратов.

Сапфировые качающиеся ячейки RCS6 (PSL Systemtechnik GmbH, Германия) были использованы для регистрации температуры начала гидратообразования и визуального наблюдения за процессом в чистой воде и в присутствии реагентов. Аппарат оснащен шестью прозрачными сапфировыми ячейками с внутренним объемом 22 мл, внутренним диаметром ячейки 12.7 мм и рабочим давлением до 20 МПа. Ячейки могут быть установлены в определенном фиксированном положении или качаться в соответствии с определенной программой в угловом диапазоне ± 45° с частотой до 20 мин-1. Каждая камера оснащена датчиком давления, датчиком температуры и камерой для создания фото и видео процессов зарождения и роста.

Как видно из Таблицы 1 на Фиг.2, в присутствии соединения общей формулы I (концентрация 0.225%) образование гидратов начинается при температуре 0.4 °C, в то время как в присутствии немодифицированного хитозана (концентрация 0.225%) гидраты образуются при температуре 16.8 °C (близко к значению чистой воды), а в присутствии коммерческого ингибитора Luvicap EG (концентрация 0.5 %) при температуре 4.4 °C.

Пример 3. Исследование способности сульфированного хитозана (I) ингибировать коррозию.

Электрохимический комплекс, включающий потенциометр BASi EC Epsilon и установку для вольтамперометрии BASi C3 Cell Stand, был использован для исследования потенциала разомкнутой цепи при 25 °C. Электрохимическая ячейка состояла из рабочего электрода, выполненного из образца углеродистой стали, с поверхности 1 см2, платинового противоэлектрода и хлоридсеребряного электрода в качестве электрода сравнения. Эксперимент проводили после выдерживания электрода в течение 1 часа в 2 М HCl в отсутствии и в присутствии сульфированного хитозана при различных концентрациях для достижения стабильного потенциала разомкнутой цепи. Кривые потенциодинамической поляризации и сопротивления линейной поляризации регистрировали путем удаления потенциала электрода на ± 0.25 В от рабочего потенциала коррозии при скорости сканирования 1.0 мВ/с.

Как видно из Таблицы 2 на Фиг.3, в присутствии соединения общей формулы I значение эффективности ингибирования коррозии равно 70%, в то время как в присутствии немодифицированного хитозана данное значение равно лишь 25%, т.е. при одной и той же концентрации сульфированный хитозан значительно более эффективен.

Таким образом, из описанного выше можно сделать вывод, что заявителем достигнуты поставленные задачи и заявленный технический результат, а именно - создан новый нефтепромысловый реагент - новый сульфированный хитозан формулы (I), содержащий в своем составе как фрагмент природного соединения (хитозана), так и фрагмент сульфокислоты, и обладающий способностью одновременно ингибировать образование газовых гидратов и коррозию, с целью расширения линейки нефтепромысловых реагентов указанного назначения, снижения экономических затрат и минимизации нагрузки на окружающую среду.

Заявленное техническое решение соответствует критерию «новизна», предъявляемому к изобретениям, так как из исследованного уровня техники не выявлены технические решения, обладающие заявленной совокупностью признаков, обеспечивающих достижение заявленных результатов.

Заявленное техническое решение соответствует критерию «изобретательский уровень», предъявляемому к изобретениям, так как не является очевидным для специалиста в данной области науки и техники, так как заявленное техническое решение обеспечивает возможность одновременной реализации двух задач (ингибирование гидратообразования и решения вопросов ингибирование коррозии) с более высокими потребительскими свойствами.

Заявленное техническое решение соответствует критерию «промышленная применимость», так как может быть реализовано на любом специализированном предприятии с использованием стандартного оборудования, известных отечественных материалов и технологий.

Соединение на основе биоразлагаемого хитозана формулы (I) в качестве ингибитора образования газовых гидратов и коррозии:



 

Похожие патенты:

Изобретение относится к области защиты металлов от коррозии, в частности к способу получения ингибитора атмосферной коррозии, ингибитор может быть использован для долговременной консервации металлоконструкций и изделий из черных металлов, для создания рабоче-консервационных масел, где требуется одновременное обеспечение высоких антикоррозионных, антиокислительных и противоизносных свойств, особенно для ружейных масел.
Изобретение относится к ингибиторам коррозии, карбонатных, сульфатных и железоокисных отложений, и может применяться для нормализации содержания ионов железа как в горячей, холодной водопроводной воде общего потребления, так и в системах водооборотного снабжения металлургических, химических и пищевых предприятий и других промышленных предприятий.

Изобретение относится к химии фосфорорганических соединений и области защиты металлов от коррозии и может быть использовано для защиты металлов от углекислотной, сероводородной или смешанной коррозии.

Изобретение относится к составам химических средств для ингибирования коррозии и накипеобразования в системах оборотного охлаждения электростанций. Описан ингибитор коррозии и накипеобразования для применения в системах оборотного охлаждения электростанций или промышленных предприятий, представляющий собой реагент на основе фосфорсодержащих органических соединений, полимеров и триазолов, отличающийся тем, что он содержит нижеперечисленные компоненты в мас.

Изобретение относится к области защиты металлов от наводороживания и может быть использовано для защиты конструкций из углеродистой стали с гальваническим покрытием Cu-Zn.

Изобретение относится к антикоррозионной обработке поверхности стальных изделий. Способ включает обработку поверхности стальных изделий в водном растворе реагента, в качестве которого применяют декагидрат бис(нитрило-трис-метиленфосфонато-аква-плюмбата(II)) тетранатрия, последующую сушку изделий и термическую обработку при температуре 250-350°С.

Изобретение относится к ингибиторам коррозии и накипеобразования для обработки воды теплосетей, которые представляют собой реагенты на основе фосфорсодержащих органических соединений, и предназначено для использования преимущественно в теплоэнергетике.

Изобретение относится к защите металлов от коррозии с помощью ингибиторов и может быть использовано для защиты различного оборудования, изготовленного из меди и ее сплавов.

Изобретение относится к технике защиты металлов от коррозии с помощью ингибиторов и может быть использовано для защиты различного оборудования, изготовленного из меди и ее сплавов.

Изобретение относится к области защиты металлов от коррозии в нейтральных водных средах и может быть использовано для защиты от коррозионного разрушения кузова автомобиля и его днища.

Изобретение относится к получению гидрогелей из гликозаминогликанов. Предложенный гидрогелевый продукт содержит молекулы гликозаминогликанов в качестве способного к набуханию полимера.
Наверх