1-сульфонил-2-(дифенилфосфорил)пирролидины, обладающие цитотоксичностью в отношении раковых клеток шейки матки, и способ их получения

Изобретение относится к 1-сульфонил-2-(дифенилфосфорил)пирролидинам формулы I, обладающим цитотоксическим действием в отношении раковых клеток. В формуле I R1=Ph, R2=Me (a); R1=R2=Ph (б). Изобретение относится также к способу получения соединений формулы I. Способ заключается во взаимодействии 1-сульфонил-2-этоксипирролидинов представленной ниже общей формулы, для которых R = Me, Ph, с избытком дифенилхлорфосфина в присутствии уксусной кислоты в подходящем растворителе при комнатной температуре до завершения реакции и выделении целевого продукта известными способами. Технический результат: полученные соединения селективно подавляют рост раковых клеток при низком или отсутствующем токсическом действии на нормальные клетки. 3 н. и 1 з.п. ф-лы, 1 табл., 4 пр.

 

Изобретение относится к области органической химии, в частности, к новым 1-сульфонил-2-(дифенилфосфорил)пирролидинам формулы I

где R1=Ph, R2=Me (a); R1=R2=Ph (б),

которые могут найти применение в фармакологии и медицине.

Пирролидиновый фрагмент входит в состав многих известных биологически активных соединений (Debnath В., Singh W.S., Das М., Goswami S., Singh M.K., Maiti D., Manna K. Role of plant alkaloids on human health: A review of biological activities, Mater. Today Chem., 2018, 9, 56-72; Singh P., Manda S.L.K., Samanta K., Panda G. α-Amino acids with electrically charged and polar uncharged side chains as chiral synthon: Application to the synthesis of bioactive alkaloids (1996-Dec, 2013), Tetrahedron, 2017, 73, 1911-2008; Gouliaev A.H., Senning A. Piracetam and other structurally related nootropics, Brain Res. Rev., 1994, 19, 180-222; Hollstein U. Actinomycin. Chemistry and mechanism of action, Chem. Rev., 1974, 74, 625-652). Согласно литературным данным, пирролидин является одним из наиболее часто встречающихся в составе лекарственных препаратов гетероциклов (Haria М., Balfour J.A. Levetiracetam, CNS Drugs, 1997, 7, 159-164). Следует особо отметить один из новых противораковых препаратов, содержащих фрагмент 2-замещенного пирролидина, «Акалабрутиниб» (Byrd J.С., Harrington В., O'Brien S., Jones J.A., Schuh A., Devereux S., Chaves J., Wierda W.G., Awan F.T., Brown J.R., Hillmen P., Stephens D.M., Ghia P., Barrientos J.C., Pagel J.M., Woyach J., Johnson D., Huang J., Wang X., et al. Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia, N. Engl. J. Med., 2016, 374, 323-332) компании «Астра Зенека» для взрослых пациентов с мантийноклеточной лимфомой, одобренный Управлением по контролю качества пищевых продуктов и лекарственных средств США в 2017 году.

Значительный интерес вызывают производные пирролидина, имеющие в своем составе фосфорорганический фрагмент - фосфорсодержащие аналоги аминокислоты пролина. В частности, представители этого класса соединений обладают бактерицидными, фунгицидными, гербицидными свойствами (Sirrenberg W., Hammann I., Homeyer В. O-(1,2-dibromo-2,2-dichloro-ethyl)-phosphoric acid diester-amides, 3911058, 1975; Sirrenberg W., Hammann I. O-(1-Methyl-2-alkylmercapto-vinyl)-phosphoric acid ester amides, 3856892, 1999; Hassan J. Phosphorous organic compounds and their use, 6812224, 2004); олигопептиды, содержащие фрагмент фосфопролина (2-фосфорилпирролидина) могут выступать в качестве ингибиторов различных протеаз (Vander Veken P., Soroka A., Brandt I., Chen Y.-S., Maes M.-B., Lambeir A.-M., Chen X., Haemers A., S., Augustyns K., DeMeester I. Irreversible Inhibition of Dipeptidyl Peptidase 8 by Dipeptide-Derived Diaryl Phosphonates, J. Med. Chem., 2007, 50, 5568-5570; Belyaev A., Zhang X., Augustyns K., Lambeir A.-M., DeMeester I., Vedernikova I., S., Haemers A. Structure-Activity Relationship of Diaryl Phosphonate Estersas Potent Irreversible Dipeptidyl Peptidasel VInhibitors, J. Med. Chem., 1999, 42, 1041-1052; Gilmore B.F., Carson L., McShane L.L., Quinn D., Coulter W.A., Walker B. Synthesis, kinetic evaluation, and utilization of abiotic nylateddipeptideproline diphenylphosphonate for the disclosure of dipeptidyl peptidase IV-likeserine proteases, Biochem. Biophys. Res. Commun., 2006, 347, 373-379; E., Т., Niessen S., Cravatt B.F., Giralt E. Activity-Based Probes for Monitoring Postproline Protease Activity, ChemBioChem, 2009, 10, 2361-2366) и протеиназы ВИЧ-1 (Camp N.P., Hawkins P.C.D., Hitchcock P.B., Gani D. Synthesis of stereochemically defined phosphonamidate-containing peptides: Inhibitors for the HIV-1 proteinase, Bioorg. Med. Chem. Lett., 1992, 2, 1047-1052; Camp N.P., Perrey D.A., Kinchington D., Hawkins P.C.D., Gani D. Synthesis of peptide analogues containing phosphonamidate methyl ester functionality: HIV-1 proteinase inhibitors possessing unique cell uptake properties, Bioorg. Med. Chem., 1995, 3, 297-312). Нуклеозид, содержащий фрагмент 2-фосфорилпирролидина, может быть использован при лечении гепатита, в частности, вирусного гепатита В (Das Н., Wang L., Kamath А., Bukowski J.F. Vgamma 2 V delta 2 T-cellreceptor-mediated recognition of aminobis phosphonates, Blood, 2001, 98, 1616-1618). Неменьший интерес вызывают производные 1-сульфонилпирролидина, предложенные для лечения тромбоэмболических (Noguchi Т., Tanaka N., Nishimata Т., Goto R., Hayakawa M., Sugidachi A., Ogawa Т., Asai F., Fujimoto K., Matsui Y., Fujimoto K. Indoline Derivatives I: Synthesisand Factor Xa (FXa) Inhibitory Activities, Chem. Pharm. Bull. (Tokyo)., 2006, 55, 1494-1504) и нейродегенеративных заболеваний, таких, как болезнь Паркинсона (Vincent M., W. 1-Sulfonylpyrrolidine derivatives, US 2003212066, 2013; Vincent M., Eric V., W. 1-arenesulfonyl-2-aryl-pyrrolidineand piperidine derivatives, US 6284785B1, 04.09.2001) и Альцгеймера (Guo Т., Gu H., Hobbs D.W., Rokosz L.L., Stauffer T.M., Jacob В., Clader J.W. Design, synthesis, and evaluation of tetrahydroquinoline and pyrrolidine sulfonamide carbamates as γ-secretase inhibitors, Bioorg. Med. Chem. Lett., 2007, 17, 3010-3013); а также способные выступать в качестве антагонистов опиоидных рецепторов (Verhoest P.R., Sawant Basak A., Parikh V., Hayward М., Kauffman G.W., Paradis V., McHardy S.F., McLean S., Grimwood S., Schmidt A.W., Vanase-Frawley M., Freeman J., VanDeusen J., Cox L., Wong D., Liras S. Designand Discovery of a Selective Small Molecule к Opioid Antagonist (2-Methyl-N-((2'-(pyrrolidin-1-ylsulfonyl)biphenyl-4-yl)methyl)propan-1-amine, PF-4455242), J. Med. Chem., 2011, 54, 5868-5877) и хемокинового рецептора CCR4 (Burdi D.F., Chi S., Mattia K., Flarrington C., Shi Z., Chen S., Jacutin-Porte S., Bennett R., Carson K., Yin W., Kansra V., Gonzalo J.-A., Coyle A., Jaffee В., Ocain Т., Hodge M., LaRosa G., Harriman G. Small molecule antagonists of the CC chemokinereceptor 4 (CCR4), Bioorg. Med. Chem. Lett., 2007, 17, 3141-3145). Кроме того, имеются сведения об ингибировании этими соединениями матриксной металлопротеиназы 2 (ММР2) (Cheng X.-С., Wang Q., Fang Н., Tang W., Xu W.-F. Synthesis of new sulfonylpyrrolidine derivatives as matrix metalloproteinase inhibitors, Bioorg. Med. Chem., 2008, 16, 7932-7938). В то же время, несмотря на интенсивные исследования в области химии и фармакологии производных 2-фосфорилпирролидина и 1-сульфонилпирролидина, сведения об их противораковой активности и цитотоксическом действии в отношении раковых клеток представлены в литературе единственным примером (Bagautdinova R.K., Vagapova L.I., Smolobochkin A.V., Gazizov A.S., Burilov A.R., Pudovik M.A., Voloshina A.D. Synthesis of 1-(2-aminoethylsulfonyl)-2-phosphorylpyrrolidines viaconsecutive Arbuzovandaza-Michaelre actions and theirantitumor activity, Mendeleev Commun., 2019, 29, 686-687).

Имеющиеся методы синтеза фосфорсодержащих производных пирролидина могут быть разделены на два основных подхода. Первый базируется на модификации уже имеющегося пирролидинового ядра. Наибольшее распространение в рамках этого подхода получили методы, основанные на взаимодействии производных 1-пирролина (Huang S., Chen Z., Du L., Tian Q., Liu Y., Zheng Y., Liu Y. Site-Specific Detection of Free Radicals in Membranes Using an Amphiphilic Spin Trap, Appl. Magn. Reson., 2015, 46, 489-504; Odinets I.L., Artyushin O.I., Lyssenko K.A., Shevchenko N.E., Nenajdenko V.G., G.-V. Facile synthesis of cyclic α-perfluoroalky 1-α-aminophosphonates, J. Fluor. Chem., 2009, ISO, 662-666; Odinets I., Artyushin O., Shevchenko N., Petrovskii P., Nenajdenko V., G.-V. Efficient Synthesis of Substituted Cyclic α-Aminophosphonates, Synthesis (Stuttg)., 2009, 2009, 577-582), либотримера 1-пирролина (Couture A., Deniau E., Lebrun S., Grandclaudon P., Carpentier J.-F. A new route to ene carbamates, precursors to benzoindolizinones through sequential asymmetric hydrogenation and cyclization, J. Chem. Soc. Perkin Trans. 1, 1998, 1403-1408; Borloo M., Jiao X.-Y., H., Rajan P., Verbruggen C, Augustyns K., Haemers A. A Convenient One-Pot Preparation of Disubstituted Phosphinic Acids Derived from Simple Amino Acids and Proline, Synthesis (Stuttg)., 1995, 1995, 1074-1076; Koeller K.J., Rath N.P., Spilling CD. Reactions of chiral phosphorus acid diamides: lewis acid catalyzed addition to imines and oxidation with SnCl4, Phosphorus. Sulfur. Silicon Relat. Elem., 1995, 103, 171-181) с гидрофосфорильными соединениями (реакция Пудовика). Основными ограничениями этого подхода являются доступность и стабильность соответствующим образом замещенных исходных производных пирролидина, многостадийность превращений, требуемых для получения целевых соединений. Второй подход включает в себя формирование пирролидинового цикла из ациклических предшественников. Чаще всего в качестве исходных соединений используются производные бутан-1-амина, содержащие фосфорильный заместитель (Qian R., Horak J., Hammerschmidt F. Conversion of nitriles to 1-aminophosphonic acids and preparation of phosphahomocysteines of high enantiomeric excess., Phosphorus, Sulfur Silicon Relat. Elem., 2017, 192, 737-744; O.A., Romero-Estudillo I.I., Viveros-Ceballos J.L.J. L., Cativiela С., M., Ramirez-Marroquin O.A., Romero-Estudillo I.I., Viveros-Ceballos J.L., Cativiela С., Ordonez M. Convenient Synthesis of Cyclic α-Aminophosphonates by Alkylation-Cyclization Reaction of Iminophosphoglycinates Using Phase-Transfer Catalysis., European J. Org. Chem., 2016, 2016, 308-313; Chen Q., Yuan C. A Facile Synthesis of Chiral 4-(tert-Butylsulfinylamino)-2-oxophosphonates and Their Conversion into 5,5-Disubstituted 2-Benzylidene-3-oxopyrrolidines, Synthesis (Stuttg)., 2008, 2008, 1085-1093; Davis F.A., Wu Y., Xu H., Zhang J. Asymmetric Synthesis of Cis-5-Substituted Pyrrolidine 2-Phosphonates Using Metal Carbenoid NH Insertion and δ-Amino β-Ketophosphonates., Org. Lett., 2004, 6, 4523-4525). Существенным недостатком этого подхода является необходимость предварительного введения в молекулы соединений-предшественников как фосфорильного фрагмента, так и функциональных групп, обеспечивающих возможность внутри- или межмолекулярной циклизации, что усложняет синтетическую схему и приводит к снижению выхода целевого соединения.

Задачей изобретения является создание новых средств, обладающих цитотоксичностью в отношении раковых клеток, и при этом оказывающих низкое токсическое влияние на нормальные клетки, расширяющих ассортимент средств указанного назначения.

Техническим результатом является свойство новых 1-сульфонил-2-фосфорилпирролидинов селективно подавлять рост раковых клеток при низком или отсутствующем токсическом действии на нормальные клетки. Технический результат также состоит в расширении арсенала средств указанного назначения.

Поставленная задача решается, и технический результат достигается заявляемыми новыми 1-сульфонил-2-(дифенилфосфорил)пирролидинами формулы I:

где R1=Ph, R2=Me (a); R1=R2=Ph (б).

Характеристики соединений формулы I приведены в соответствующих примерах, иллюстрирующих изобретение.

Для данных соединений определено свойство селективно подавлять рост раковых клеток при отсутствующем токсическом действии на нормальные клетки, что делает их перспективными в качестве новых противораковых препаратов. Заявленные соединения исследованы на цитотоксичность в отношении клеточных линий человека - нормальных клеток печени Chang liver и опухолевых М-Hela (рак шейки матки).

Кроме того поставленная задача решается, и технический результат достигается заявляемым способом получения 1-сульфонил-2-(дифенилфосфорил)пирролидинов формулы I, включающим взаимодействие при комнатной температуре 2-этокси-1-сульфонилпирролидинов с избытком дифенилхлорфосфина в присутствии уксусной кислоты в инертных растворителях, в качестве которых могут быть использованы хлороформ, бензол, толуол, ксилол. Далее выделяют целевой продукт известными способами. Контроль за прохождением реакции осуществляют методом 31Р ЯМР-спектроскопии. Отсутствие избытка дифенилхлорфосфина приводит к снижению выхода целевого продукта.

Ниже приведена схема получения 1-сульфонил-2-(дифенилфосфорил)пирролидинов формулы I

где R1=Ph, R2=Me (a); R1=R2=Ph (б).

Исходные 2-этокси-1-сульфонилпирролидины были синтезированы по известной методике исходя из соответствующего сульфонилхлорида и 4,4-диэтоксибутан-1-амина (Gazizov A.S., Smolobochkin A.V., Anikina Е.А., Voronina J.K., Burilov A.R., Pudovik M.A. Acid-catalized Intramolecular Cyclization of N-(4,4-diethoxybutyl)sulfonamides as a Novel Approach to the 1-Sulfonyl-2 aryl-pyrrolidines, Synth. Commun., 2017, 47, 44-52).

При осуществления заявленного способа были использованы коммерчески доступные растворители и реагенты: дифенилхлорфосфин (Tokyo Chemical Industry Co., чистота >97%), уксусная кислота (Tokyo Chemical Industry Co., чистота >99.5%), хлороформ, бензол, толуол, ксилол (ООО НПФ «ТатХимПродукт», марка ХЧ).

Изобретение иллюстрируется примерами получения заявляемых соединений формулы I и исследования их цитотоксичности в отношении нормальных клеток печени и опухолевых клеток шейки матки.

Пример 1.

Получение(1-(Метилсульфонил)пирролидин-2-ил)дифенилфосфин оксида (Ia).

В круглодонную колбу помещают 0.29 г 2-этокси-1-(метилсульфонил)пирролидина (1.52 ммоль) и 10 мл абсолютного хлороформа. Затем добавляют 0.39 г дифенилхлорфосфина (1.77 ммоль) и 0.1 мл ледяной уксусной кислоты (1.75 ммоль), перемешивают при температуре 20°С в течение 24 часов до окончания реакции. Контроль за прохождением реакции осуществляют методом 31Р ЯМР-спектроскопии. Затем от реакционной смеси отгоняют растворитель, остаток промывают диэтиловым эфиром (5 мл). Образовавшийся белый осадок отфильтровывают и сушат в вакууме (10 мм рт. ст., 20°С, 5 ч). Выход 0.34 г (65%), т.пл. 169°С. ИК спектр ν, см-1: 1341, 1438, 1591, 2938. Спектр ЯМР 1Н (ДМСО-d6), δ, м. д.: 1.78-1.89 м (1Н, СН2), 1.90-2.02 м (2Н, СН2), 2.08-2.20 м (1Н, СН2), 2.77 с (3Н, СН3), 3.21-3.31 м (1Н, СН2), 3.51-3.63 м (1Н, СН2), 5.00-5.10 м (1Н, СН), 7.45-7.63 м (6Н, CHAr), 7.79-7.85 м (2Н, CHAr), 7.88-7.95 м (2Н, CHAr). Спектр ЯМР 13С (ДМСО-d6), δ, м. д.: 25.03, 26.73, 36.76, 50.03, 58.32 д (J 85.6 Гц), 128.57 д (Л 1.5 Гц), 129.24 д (J 10.9 Гц), 131.45 д (J 8.5 Гц), 132.29 д (J 8.2 Гц). Спектр ЯМР 31Р (ДМСО-d6), δ, м. д.: 30.67. Масс-спектр (ESI-TOF), m/z: 372 [М+Na]+. Найдено, %: С, 58.55; Н, 5.90; N, 3.93; Р, 8.92; S, 9.33. C17H20NO3PS. Вычислено, %: С, 58.44; Н, 5.77; N, 4.01; Р, 8.87; S, 9.18.

Пример 2.

Дифенил(1-(фенилсульфонил)пирролидин-2-ил)фосфин оксид - Iб получают аналогично примеру 1 из 0.39 г 2-этокси-1-(фенилсульфонил)пирролидина (1.52 ммоль). Получают белый порошок. Выход 0.19 г (30%), т.пл. 138-139°С. ИК спектр ν, см-1: 1349, 1438, 1590, 2972. Спектр ЯМР 1Н (ДМСО-d6), δ, м. д.:0.99-1.14 м (1Н, СН2), 1.50-1.63 м (1Н, СН2), 1.71-1.84 м (2Н, СН2), 3.22-3.31 м (1Н, СН2), 3.39-3.47 м (1Н, СН2), 5.14-5.24 м (1Н, СН), 7.50-7.60 м (6Н, CHAr), 7.69 т (1Н, CHAr, J 7.5 Гц), 7.71-7.76 м (2Н, CHAr), 7.84 д (2Н, CHAr, J 7.4 Гц), 7.86-7.93 м (2Н, CHAr), 7.94-7.99 м (2Н, CHAr). Спектр ЯМР 31Р (ДМСО-d6), δ, м. д.: 31.98. Спектр ЯМР 13С (ДМСО-d6), δ, м. д.: 24.35, 26.06, 50.04, 58.66 д (J 84.8 Гц), 128.00, 128.62 д (J 11.6 Гц), 124.29 д (J 11.0 Гц), 132.13 д (J 9.2 Гц), 132.33 д (J 27.5 Гц), 133.79, 138.31. Масс-спектр (ESI-TOF), m/z: 412 [М+Н]+, 434 [М+Na]+. Найдено, %: С, 64.51; Н, 5.65; N, 3.39; Р, 7.79; S, 7.87. C22H22NO3PS. Вычислено, %: С, 64.22; Н, 5.39; N, 3.40; Р, 7.53; S, 7.79.

Пример 3.

Дифенил(1-(фенилсульфонил)пирролидин-2-ил)фосфин оксид - Iб получают аналогично примеру 2, используя в качестве растворителя 10 мл абсолютного бензола. Получают белый порошок. Выход 0.21 г (34%), т.пл. 138-139°С. ИК спектр ν, см-1: 1349, 1438, 1590, 2972. Спектр ЯМР 1Н (ДМСО-d6), δ, м. д.:0.99-1.14 м (1Н, СН2), 1.50-1.63 м (1Н, СН2), 1.71-1.84 м (2Н, СН2), 3.22-3.31 м (1Н, СН2), 3.39-3.47 м (1Н, СН2), 5.14-5.24 м (1Н, СН), 7.50-7.60 м (6Н, CHAr), 7.69 т (1Н, CHAr, J 7.5 Гц), 7.71-7.76 м (2Н, CHAr), 7.84 д (2Н, CHAr, J 7.4 Гц), 7.86-7.93 м (2Н, CHAr), 7.94-7.99 м (2Н, CHAr). Спектр ЯМР 31Р (ДМСО-d6), δ, м. д.: 31.98. Спектр ЯМР 13С (ДМСО-d6), δ, м. д.: 24.35, 26.06, 50.04, 58.66 д (J 84.8 Гц), 128.00, 128.62 д (J 11.6 Гц), 124.29 д (J 11.0 Гц), 132.13 д (J 9.2 Гц), 132.33 д (J 27.5 Гц), 133.79, 138.31. Масс-спектр (ESI-TOF), m/z: 412 [М+Н]+, 434 [М+Na]+. Найдено, %: С, 64.51; Н, 5.65; N, 3.39; Р, 7.79; S, 7.87. C22H22NO3PS. Вычислено, %: С, 64.22; Н, 5.39; N, 3.40; Р, 7.53; S, 7.79.

Пример 4.

Цитотоксичность заявляемых соединений

Соединения Ia и Iб были исследованы на цитотоксичность в отношении нормальных и опухолевых клеточных линий человека Chang liver и M-Hela (рак шейки матки). Оценку их цитотоксического действия проводят путем подсчета жизнеспособных клеток с помощью многофункциональной системы Cytell Cell Imaging (GE Helth care Life Science, Швеция), используя приложение Cell Viability Bio App, которое позволяет точно подсчитать количество клеток, оценить их жизнеспособность на основании интенсивности флуоресценции.

В экспериментах используют два флуоресцентных красителя, которые избирательно проникают в клеточные мембраны и флуоресцируют на разных длинах волн. Низкомолекулярный 4',6-диамидин-2-фенилиндол (DAPI) способен проникать через неповрежденные мембраны живых клеток и окрашивать ядра в синий цвет. Высокомолекулярный пропидий йодид способен проникает только в мертвые клетки с поврежденными мембранами, окрашивая их в желтый цвет. В результате живые клетки окрашиваются в синий цвет, а мертвые -в желтый. В исследовании использованы 4',6-Диамидин-2-фенилиндол и пропидий йодид производства фирмы Sigma-Aldrich (MerckK GaA, Германия).

Клетки культивируют в стандартной питательной среде «Игла», изготовленной в Институте полиомиелита и вирусных энцефалитов имени М.П. Чумакова (компания РаnЕсо), с добавлением 10% эмбриональной сыворотки теленка и 1% заменимых аминокислот. Клетки высевают в 96-луночный планшет (Eppendorf) в концентрации 100000 клеток/мл, 150 мкл среды на лунку и культивируют в CO2-инкубаторе при 37°С. Через 24 часа после посева клеток в лунки добавляют исследуемое соединение определенной концентрации (150 мкл/лунку). Растворы соединений (1-100μМ) готовят непосредственно в питательной среде с добавлением для лучшей растворимости 5% ДМСО, раствор которого не вызывает ингибирования клеток при этой концентрации. Каждый эксперимент повторяют три раза. В качестве контроля используют интактные клетки, культивируемые параллельно с экспериментальными клетками.

Для экспериментов используют опухолевую культуру клеток М-Hela клон 11 (эпителиоидная карцинома шейки матки, сублиния Hela, клон М-Hela), полученную из Федерального государственного бюджетного учреждения науки «Институт цитологии Российской академии наук», и культуру нормальных клеток печени (Chang liver), полученную из Федерального государственного бюджетного учреждения «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи». Полученные значения концентраций полумаксимального ингибирования (IC50) для соединений Ia и Iб приведены в таблице. В качестве препаратов сравнения используют известные препараты Тамоксифен и Доксорубицин.

Экспериментально определенное значение концентрации полумаксимального ингибирования (IC50) для соединения Ia составила 63.3 μМ, для соединения Iб - 56.1 μМ, для препаратов сравнения Тамоксифена и Доксорубицина - 28.0±2.5 и 3.0±0.2 μМ соответственно (для опухолевой культуры клеток линии М-Hela). Данные, представленные в таблице, показывают, что все исследованные соединения проявляют активность в отношении культуры клеток линии М-Hela, хотя значения IC50 препаратов сравнения оказались существенно ниже, чем для заявленных соединений: для соединения Ia значение IC50 в 2.2 раз выше, чем для препарата сравнения Тамоксифен, и в 21.1 раз выше, чем для препарата сравнения Доксорубицин, для соединения 16 значение IC50 в 2.0 раз выше, чем для Тамоксифена, и в 18.7 раз выше, чем для Доксорубицина.

В тоже время, в отличие от препаратов сравнения, заявленные соединения не проявили цитотоксичности по отношению к культуре нормальных клеток печени Chang liver в изученном диапазоне концентраций: значения IC50 для соединений Ia и Iб, составили >100 μМ, в том времени как для препарата сравнения Тамоксифен значение IC50 для нормальных клеток печени Chang liver составило 46.2±3.5 μМ, для препарата сравнения Доксорубицин - 3.0±0.1 μМ, что сравнимо со значениями цитотоксичности для раковых клеток. Значения таблицы свидетельствуют, что заявленные соединения демонстрируют селективность в диапазоне концентраций 1-100 μМ - проявляют цитотоксичность в отношении опухолевых клеток человека линии М-Hela и не проявляют цитотоксичности по отношению к нормальным клеткам печени Chang liver.

Таким образом, предложены новые 1-сульфонил-2-(дифенилфосфорил)пирролидины, обладающие цитотоксичностью в отношении раковых клеток линии М-Hela, при этом не оказывающие цитотоксического действия на нормальные клетки линии Chang liver. Заявляемые новые соединения благодаря свойству селективно подавлять рост раковых клеток при отсутствующем токсическом действии на нормальные клетки представляют интерес как новые противораковые препараты.

Предлагаемый способ получения заявляемых 1-сульфонил-2-(дифенилфосфорил)пирролидинов, основанный на взаимодействии избытка дифенилхлорфосфина с 2-этокси-1-сульфонилпирролидинамив присутствии уксусной кислоты, является новым и позволяет получать целевые соединения с выходом 30-65% в мягких условиях в одну стадию.

1. 1-Сульфонил-2-(дифенилфосфорил)пирролидины формулы I

,

где R1=Ph, R2=Me (a); R1=R2=Ph (б).

2. 1-Сульфонил-2-(дифенилфосфорил)пирролидины формулы I

где R1=Ph, R2=Me (a); R1=R2=Ph (б),

обладающие цитотоксичностью в отношении раковых клеток шейки матки.

3. Способ получения 1-сульфонил-2-(дифенилфосфорил)пирролидинов формулы I

где R1=Ph, R2=Me (a); R1=R2=Ph (б),

включающий взаимодействие при комнатной температуре 1-сульфонил-2-этоксипирролидинов формулы

где R=Me, Ph,

с избытком дифенилхлорфосфина в присутствии уксусной кислоты в подходящем растворителе до завершения реакции и выделение целевого продукта известными способами.

4. Способ получения 1-сульфонил-2-(дифенилфосфорил)пирролидинов по п.3, отличающийся тем, что в качестве растворителя используют хлороформ, бензол, толуол, ксилол.



 

Похожие патенты:

Настоящее изобретение относится к способу синтеза аминоалкиленфосфоновой кислоты или ее фосфонатных сложных эфиров и может использоваться в химической промышленности.

Изобретение относится к способу синтеза альфа-аминоалкиленфосфоновой кислоты или ее сложного эфира, применяемых, например, для обработки воды, замедления процесса образования накипи, моющих присадок, комплексообразователей.

Изобретение относится к монозамещенной фосфиновой кислоте, способу ее получения и к применению указанной кислоты в качестве регулятора в свободно-радикальной полимеризации.

Изобретение относится к области органической химии, а именно к способу получения 1,2,5-триалкил-3,4-фуллеро[60]фосфоланов формулы (1), которые могут найти применение в качестве комплексообразователей, сорбентов, биологически активных соединений, а также при создании новых материалов с заданными электронными, магнитными и оптическими свойствами.

Изобретение относится к группе новых соединений формулы (I) где волнообразная связь обозначает рацемат, (R)-энантиомер или (S)-энантиомер; А представляет собой прямую связь или (С=O); В представляет собой прямую связь, кислород или азот; m имеет значение 0 или 1; n имеет значение 1, 2 или 3; R1 и R 2 каждый независимо является водородом или C 1-6алкилом, и когда R1 представляет собой водород, R2 может также быть P(O)OR 5OR6; R3 и R4 каждый независимо является водородом или C1-4 алкилом; R5 и R6 каждый независимо является водородом, или к их нетоксичным фармацевтически приемлемым солям или сольватам.

Изобретение относится к новым P,N-бидентатным лигандам формулы (I): где А представляет S или NR,где R представляет C1-C4 алкил,R1 и R 2 представляют водород, C1-C4 алкил или R1 и R2 могут быть замкнуты в бензольное кольцо,R3 и R4 представляют C 1-C4 алкил или фенил,R5 и R6 представляют C1-C4 алкил.

Изобретение относится к производным фосфиновых и фосфоновых кислот формулы (I) где R1 означает незамещенный или замещенный фенил, -О-(С1-С6)-алкил, R2 означает водород, R и R3 означают водород, алкил, незамещенный или замещенный фенил, группы СООН или (СН2)2-СН(СООН)-NH -SO2-C6H4-C6H4-Cl(n), t означает целое число 1-4, А - ковалентная связь, Х - группа -СН=СН-, В - группа -(СН2)о-, где о равно 0,1,2 или 3, Y1 и Y2 означают -ОН, -(С1-С4)-алкил, -О-(С1-С4)-алкил, и/или их стереоизомерным формам и/или физиологически приемлемым солям.

Изобретение относится к новым гетероарил-арилдифосфинам формул (I) и (II), где для соединений формулы (I) A=S, если В=С; А=N, если B=N, R1 - водород или C1-C4 алкил, R2-R5-фенил, R6 и R7 - водород, n=0 или 1, R8-R11 - водород; для соединений ф-лы (II) A=N, если В=С, R1=С1-С4алкил, А=С, если B= N, R1 - водород; A=N, если В=Н, R1=0; А=О, если В=С, R1=0, R2-R5 - фенил, R8-R11 - водород или C1-C4 алкил.

Изобретение относится к амидам фосфиновых кислот ф-лы (I), где R1 - водород, алкил, фенилалкил, пиридинил, пиридинилалкил, алкоксиалкил, фенилалкоксиалкил; R2 - водород, алкил, фенилалкил, индолил, фенилалкоксиалкил, алкилтиоалкил, алкиламиноалкил; R3 - алкил или фенил; R4 - алкил, фенил или замещенный фенил, пиридил, тиенил или фурил, к их оптическим изомерам, диастереомерам, энантиомерам, фармацевтически приемлемым солям или биогидролизуемым сложным эфирам, которые могут быть использованы в качестве ингибиторов матриксной металлопротеазы при лечении состояний, характеризуемых чрезмерной активностью указанных ферментов.

Изобретение относится к катализаторам, используемым для гомо- и сополимеризации этилена и других олефиновых углеводородов. .

Изобретение относится к применимым в медицине соединениям общей формулы (I), их оптическим изомерам и солям присоединения к фармацевтически приемлемой кислоте: ,где Ak1 представляет собой C1-C6-алкильную цепь, X представляет собой -(CH2)m-, -CH(R)-, -N(R)-, -CH2-N(R)-, –N(R)-CH2- или -CH2-N(R)-CH2-, m представляет собой 0 или целое число от 1 до 4, R представляет собой атом водорода или группу, выбранную из C1-C6-алкила, -Ak2-Ar1, -Ak2-Ar1-Ar2 и –Ak2-Ar1-O-Ar2 , -Ak2-циклогексила или -Ak2-OH; Ak2 представляет собой линейную или разветвленную C1-C6-алкильную цепь; Ar1 и Ar2, которые могут быть одинаковыми или разными, каждый представляет собой арильную или гетероарильную группу; R1 и R2 каждый представляет собой атом водорода, когда X представляет собой -(CH2)m-, -CH(R)-, -N(R)-, -CH2-N(R)- или –N(R)-CH2-, или вместе образуют связь, когда X представляет собой -CH2-N(R)-CH2-; R3 представляет собой NH2, Cy-NH2, Cy-Ak3-NH2 или пиперидин-4-ил; Cy представляет собой группу, выбранную из циклогексила, арила и гетероарила, Ak3 представляет собой C1-C3-алкильную цепь, R4 и R5 каждый представляет собой атом водорода, где арил означает фенил, нафтил или бифенил, при необходимости замещенный одной или несколькими группами, одинаковыми или разными, выбранными из галогена, гидрокси, линейного или разветвленного (C1-C6)-алкила, при необходимости замещенного одним или несколькими атомами галогена, метилсульфонила, метилтио, карбокси, линейного или разветвленного (C1-C6)-алкокси, при необходимости замещенного одним или несколькими атомами галогена, линейного или разветвленного (C1-C6)-аминоалкила, аминогруппа аминоалкильной группы при необходимости замещена одной или двумя группами линейного или разветвленного (С1-С6)-алкила, и гетероарил означает 5-11-членную моноциклическую ароматическую группу или бициклическую ароматическую или частично ароматическую группу, и содержащую один, два или три гетероатома, выбранных из кислорода, азота или серы, при условии, что гетероарил может быть при необходимости замещенным одной или несколькими группами, одинаковыми или разными, выбранными из галогена, гидрокси, амино, оксо, линейного или разветвленного (C1-C6)-алкила, при необходимости замещенного одним или несколькими атомами галогена, линейного или разветвленного (C1-C6)-алкокси.
Наверх