Способ азотирования деталей из легированных сталей

Изобретение относится к области металлургии и машиностроения, а именно к химико-термической обработке легированных сталей азотированием. На обезжиренную стальную деталь наносят термореактивный эпоксидный компаунд, состоящий из азотосодержащей эпоксидной смолы (А), аминного или амидного, или амино-амидного отвердителя (Б) и наполнителя в виде алюминиевой пудры (В), мас. ч. в соотношении А:Б от 100:5 до 100:80 и (А+Б):В от 100:80 до 100:400 с последующим отверждением в сушильном шкафу при температуре от 30°С до 160°С в течение от 3 минут до 180 минут. Затем осуществляют термообработку при температуре от 500°С до 1000°С в течение от 20 мин до 80 мин с обеспечением расплавления алюминия и деструкции эпоксидного компаунда с образованием активного атомарного азота, поглощаемого расплавом алюминия с образованием нитрида алюминия и нитридов других металлов на поверхности стальной детали. Затем удаляют непрореагировавший алюминий. Обеспечивается создание безопасного и эффективного процесса азотирования стальных деталей для работы в условиях трения с большими контактными нагрузками и повышенного износа. 5 пр.

 

Изобретение относится к области металлургии и машиностроения, а именно к химико-термической обработке легированных сталей, и может быть использовано при изготовлении деталей, работающих в условиях трения с большими контактными нагрузками, повышенного износа, где необходима высокая поверхностная твердость изделий.

В промышленности широко применяется метод азотирования, основанный на обработке поверхности металла атомарным азотом, который активно вступает в реакцию с расплавами металлов, образуя чрезвычайно твердые нитриды.

До настоящего времени азотирование осуществляют преимущественно аммиаком (иногда в смеси с воздухом) при 450÷780°С (см. заявка Великобритании №1522446, МКИ С23С 11/16, опубл. 23.08.1978 г.). Аммиак не реагирует с металлами, но, как указывают в источнике, может частично диссоциировать, образуя атомарный азот.

Недостатками указанных способов являются неравномерное и невысокое упрочнение поверхности, применение токсичного аммиака, низкая производительность.

Ранее был описан способ лазерного упрочнения металлических поверхностей, обеспечивающий получение покрытия, состоящего из нитрида титана, обладающего твердостью на уровне алмаза и термостойкостью до 3000°С (см. патент RU №2699602 С1, опубл. 06.09.2019, бюл. №25, авторы Колесников В.И., Лапицкий В.А. и др. - аналог). Однако лазерные установки не получили широкого распространения и недостаточно доступны, а для многих областей применения не требуются такие сверхвысокие эксплуатационные показатели.

Ближайшим аналогом заявляемого технического решения является «Способ активирования изделия из пассивного черного или цветного металла до науглероживания, азотирования и/или азотонауглероживания» (патент RU №2536841 С2, опубл. 27.12.2014 г., бюл. №36) целью которого является удаление диффузионного барьера на поверхности изделия, для последующего азотирования и/или цементации. Недостатками данного способа являются малая толщина упрочненного слоя и недостаточные температуры для образования нитридов легирующих металлов.

Описанные способы азотирования стальных изделий - А.С. СССР №120524 (заявл. 12.09.1947 г., опубл. в бюл. №12 за 1959 г. ) и №1420992 (заявл. 07.01.1987 г., опубл. 07.06.1987 г., бюл. №21) - сводятся к обработке их в камере аммиаком в течение длительного времени (иногда более суток), что малоэффективно, т.к. упрочнение стальных поверхностей азотом происходит за счет образования нитридов при воздействии только атомарного азота, который выделяется при диссоциации аммиака в незначительных количествах и накапливается в течение длительного времени.

Известен способ обработки стальных изделий в газообразной среде» (патент RU №2367716 С1, опубл. 20.09.2009 г., бюл. №26), целью которого является создание на поверхности стальных изделий слоя нитридных и оксидных фаз из железа и легирующих металлов, позволяющих повысить твердость и износостойкость путем выдержки в среде смеси воздуха и аммиака, а затем аммиака при температуре 450÷780°С. Недостатком указанного способа является потенциальная опасность его применения в производственных условиях. Кроме того, авторами не учитываются некоторые параметры образования нитридов легирующих металлов, в частности температура их образования (1300°С и выше).

Целью настоящего изобретения является создание безопасного и эффективного процесса азотирования стальных деталей с использованием стандартного заводского оборудования и серийно выпускаемых промышленных материалов - алюминиевой пудры, азотосодержащих эпоксидных смол и отвердителей.

Указанная техническая задача решается за счет того, что в способе азотирования деталей из легированных сталей, включающий нагрев в печи до температуры 500-1000°С, изотермическую выдержку при температуре нагрева, и последующее охлаждение вместе с печью, предварительно на поверхность детали наносят каталитическое покрытие, согласно изобретению, в качестве каталитического покрытия используют эпоксидный компаунд, содержащий наполнитель - порошок алюминия.

Авторами предлагается принципиально иной способ азотирования стальных изделий за счет образования нитрида алюминия на их поверхности, который имеет величину микротвердости 12 ГПа и температуру плавления 2000°С, хотя и уступающий по этим параметрам многим нитридам металлов, но значительно превосходящий легированные стали.

Предлагаемый способ азотирования легированных сталей заключается в нанесении на поверхность стальной детали эпоксидного компаунда на основе азотосодержащих эпоксидных смол и отвердителей, а также легкоплавкого наполнителя - порошка алюминия. Компаунд имеет хорошую адгезию к сталям, отверждается в течение нескольких минут, превращаясь в твердое высокопрочное покрытие, деструктурирующее за короткое время при температуре свыше 350÷450°С, образуя в среде расплава алюминия атомарный азот с примесью атомарного углерода, который является катализатором образования нитридов металлов, при этом при температуре 600÷800°С образуется нитрид алюминия (без катализатора - при температуре 1000°С).

Предлагаемый способ рассмотрен представленными ниже примерами.

Пример 1

В реактор с быстроходной мешалкой загружают жидкую эпоксианилиновую смолу марки ЭА (ТУ 2225-606-11131395-2003), содержащую 34% эпоксидных групп, в количестве 100 мас.ч., а затем добавляют 40 мас.ч. отвердителя - пара-аминобензиламина (опытно-промышленный продукт) и 240 мас.ч. алюминиевой пудры. Смесь перемешивают при 30°С в течение 5 мин, затем полученный компаунд выгружают в промежуточную емкость, из которой кистью или с помощью одно- или двухсоплового краскопульта наносят на стальную деталь слоем ~3 мм, выдерживают при комнатной температуре 60 мин до нарастания вязкости и термообрабатывают при 90°С в течение 90 мин. Получаемое покрытие устойчиво к случайным ударам (удельная ударная вязкость не менее 25 кДж/м2, прочность при сжатии 200 МПа).

Далее деталь с покрытием помещают в тигельную печь и термообрабатывают при 750°С в течение 30 мин. В это время происходит полная деструкция эпоксидного компаунда с выделением атомарного углерода и азота, который активно поглощается расплавленным алюминием с образованием на поверхности стальной детали нитрида алюминия с температурой плавления 2000°С и микротвердостью 12 ГПа. Одновременно на поверхности происходят побочные реакции образования нитридов и карбидов легирующих металлов за счет реакции последних с активными атомарными азотом и углеродом, которые также способствуют повышению поверхностной твердости стального изделия. Охлажденную деталь обрабатывают 20%-й соляной кислотой для удаления следов непрореагировавшего алюминия.

Примеры 2÷5 осуществляют аналогично примеру 1 с изменением отдельных параметров.

Пример 2

Осуществляют аналогично примеру 1, но в качестве аминосодержащей эпоксидной смолы (А) применяют смолу УП-610 (триглицидилпарааминофенол, ТУ 2225-606-11131395-2003) с жидкой эвтектической смесью МФДА (мета-фенилендиамин, ГОСТ 5826-78) с 4,4'-ДАДФМ (4,4'-диаминодифенилметан, CAS 101-77-9) (Б) в соотношении А:Б=100:80.

Пример 3

Осуществляют аналогично примеру 1, но в качестве эпоксидной смолы используют триглицидилизоцианурат марки ЭЦН (ТУ 6-05-1190-76), а в качестве отвердителя - 2-метилимидазол (CAS 693-98-1) в соотношении А:Б=100:5 при соотношении (А+Б):В (алюминиевая пудра)=100:160.

Пример 4

Осуществляют аналогично примеру 1 с использованием смолы ЭА, но в качестве отвердителя применяют аминоалкилимидазол марки И-5-М (ТУ 6-21-11-03-113-93) в соотношении А:Б=100:80, (А+Б):В=100:400 и температуру термообработки 500°С в течение 60 мин.

Пример 5

Осуществляют аналогично примеру 1, но в качестве азотосодержащей эпоксидной смолы применяют тетраглицидил 3,3'-дихлор-4,4'-диаминодифенилметан марки ЭХД (ТУ 2225-512-00203521-98) (А) и отвердитель И-5-М (ТУ 6-21-11-03-113-93) (Б) в соотношении А:Б=100:80, отверждают при 36°С в течение 80 мин, а термообрабатывают при 1000°С в течение 20 мин.

Способ азотирования деталей из легированных сталей, отличающийся тем, что на обезжиренную стальную деталь кистью или одно- или двухсопловым краскопультом наносят термореактивный эпоксидный компаунд, состоящий из азотосодержащей эпоксидной смолы (А), аминного или амидного, или амино-амидного отвердителя (Б) и наполнителя в виде алюминиевой пудры (В), мас.ч. в соотношении А:Б от 100:5 до 100:80 и (А+Б):В от 100:80 до 100:400 с последующим отверждением в сушильном шкафу при температуре от 30°С до 160°С в течение от 3 минут до 180 минут в зависимости от вида эпоксидной смолы и отвердителя, после чего стальную деталь с отвержденным покрытием подвергают термообработке при температуре от 500°С до 1000°С в течение от 20 мин до 80 мин с обеспечением расплавления алюминия и деструкции эпоксидного компаунда с образованием активного атомарного азота, поглощаемого расплавом алюминия с образованием нитрида алюминия и нитридов других металлов на поверхности стальной детали, и проводят последующую обработку детали при температуре окружающей среды 20%-ным раствором соляной кислоты для удаления непрореагировавшего алюминия.



 

Похожие патенты:

Изобретение относится к химико-термической обработке. Для улучшения трибологических свойств азотированных стальных изделий способ изготовления стальных изделий включает азотирование (210) стального изделия при температуре нитрификации в интервале 350-650°C с получением азотированного стального изделия.

Изобретение относится к области металлургии, а именно к химико-термической обработке, в частности к газовому азотированию сварочных сталей после предварительного травления и водородного отжига.

Изобретение относится к химико-термической обработке, а именно к газовому азотированию сталей с использованием нанотехнологий, и может быть использовано в машиностроении, приборостроении и других отраслях промышленности.

Изобретение относится к области металлургии и машиностроения, а именно к химико-термической обработке, в частности к циклическому газовому азотированию высоколегированных сталей, и может быть использовано при изготовлении деталей, работающих при высоких температурах в условиях трения с большими контактными нагрузками.
Изобретение относится к способу изготовления реторты для печи для азотирования, в которой металлические детали подвергаются термической обработке в предварительно заданной атмосфере, а также к реторте для печи для азотирования и к печи для азотирования с соответствующей изобретению ретортой.

Изобретение относится к области металлургии, а именно к получению текстурированного листа из электротехнической стали, используемого при изготовлении сердечников трансформаторов, генераторов и т.п.

Изобретение относится к области металлургии и машиностроения, а именно к химико-термической обработке, в частности к циклическому газовому азотированию легированных сталей с применением нанотехнологий, и может быть использовано при изготовлении деталей из конструкционных легированных сталей, работающих при высоких температурах в условиях контактных и ударных нагрузок.

Изобретение относится к поршневому кольцу, способу его изготовления и двигателю внутреннего сгорания, содержащему упомянутое поршневое кольцо. Поршневое кольцо содержит основную часть из хромистой стали с более чем 10% по массе хрома, имеющую внутреннюю периферийную поверхность, первую боковую поверхность, вторую боковую поверхность и внешнюю периферийную поверхность.

Изобретение относится к области термической обработки заготовок из пассивного сплава на основе железа. Для повышения коррозионной стойкости осуществляют закалку на твердый раствор деформированной при низких температурах заготовки из пассивного сплава, причем способ включает первый этап растворения по меньшей мере азота в заготовке при температуре T1, которая выше температуры растворимости для карбида и/или нитрида, а также ниже точки плавления пассивного сплава, и последующий второй этап растворения азота и/или углерода в заготовке при температуре T2, которая ниже температуры, при которой в пассивном сплаве образуются карбиды и/или нитриды.

Изобретение относится к металлургии, а именно к химико-термической обработке изделий из металлов и их сплавов, преимущественно сталей, и может быть использовано для упрочения изделий и повышения их эксплуатационной стойкости.
Изобретение относится к области термического упрочнения высокоуглеродистых сплавов с использованием плазмы дугового разряда между деталью и вольфрамовым электродом и может быть использовано при производстве рабочих органов орудий для разработки грунтов.
Наверх