Способ использования избыточного тепла силового масляного трансформатора для обогрева расположенных поблизости объектов

Изобретение относится к области получения и использования тепла с применением тепловых насосов и предназначено для обогрева помещений и иных объектов, расположенных вблизи от силового трансформатора. Способ заключается в отборе тепла от силового трансформатора и передаче его в контур отопления помещения или другого объекта. Избыточное тепло из трансформаторного масла отбирают с помощью промежуточного теплоносителя, проходящего через двухконтурный спиральный трубчатый теплообменник, установленный в баке силового трансформатора. Направляют его с помощью циркуляционных насосов, в случае отсутствия необходимости в обогреве объекта, по системе трубопроводов через многоходовой клапан к горизонтальному грунтовому теплообменнику, который размещён в тепловом аккумуляторе, выполненном в виде теплоизолированного объема смеси гранитного щебня и речного песка. Отбирают тепло от промежуточного теплоносителя в тепловой аккумулятор, после чего охлажденный теплоноситель вновь направляют в спиральный трубчатый теплообменник силового трансформатора. Техническим результатом изобретения является обеспечение возможности использования силового трансформатора в качестве источника теплоснабжения для обогрева помещений. 1 ил.

 

Изобретение относится к области получения и использования тепла с применением тепловых насосов и предназначено для обогрева помещений и иных объектов, расположенных вблизи от силового трансформатора.

Наиболее близким по технической сущности является патент РФ №2234755, МПК H01F27/08, опубл. 20.08.2004, в котором раскрывается способ функционирования установки для использования избыточного тепла от силового трансформатора для отопления жилых домов или иных сооружений, в которой от силового трансформатора по трубопроводу до установленного снаружи пластинчатого теплообменника и обратно циркулирует охлаждающее масло. В данном теплообменнике тепло от трансформаторного масла передается промежуточному теплоносителю, протекающему по трубопроводу до расположенного рядом теплового насоса и обратно. Тепло от теплового насоса передается с помощью теплоносителя системы отопления к теплопотребляющим модулям, например, батареям здания. Также в системе после пластинчатого теплообменника имеется трубопровод, входящий в скальный грунт, землю или воду, которые могут использоваться либо в качестве излучателя тепла (грунтового тепла), либо в роли теплоотвода (накопителя тепла). Циркуляцию теплоносителей обеспечивают циркуляционные насосы, а направление потоков регулируют многоходовые клапаны, меняющие положение напрямую от показаний датчиков температуры трубопроводов (патент РФ №2234755, МПК H01F27/08, опубл. 20.08.2004).

Недостатками известного способа является его применимость лишь для закрытых трансформаторных подстанций большой мощности, а также наличие потерь тепла в системе и недостаточно высокая эффективность отбора тепла от силового трансформатора.

Задачей предлагаемого изобретения является осуществление теплоснабжения объектов, расположенных вблизи трансформаторной подстанции, путем отбора тепла от силового трансформатора и его передачи в систему отопления объектов посредством использования теплообменника внутренней установки, промежуточного теплоносителя, системы трубопроводов, теплового насоса, хранения полученного тепла с применением теплового аккумулятора, с управлением процессом получения тепла, его транспортировки, хранения и использования на объекте теплоснабжения с помощью автоматизированной системы, а также обеспечение возможности увеличения срока службы трансформатора за счёт формирования более равномерного распределения температур в пространстве бака и снижения амплитуды её колебаний

В результате использования предлагаемого изобретения является обеспечение возможности использования силового трансформатора в качестве источника теплоснабжения, передачи тепла от него объекту теплоснабжения с применением теплообменника внутренней установки, промежуточного теплоносителя, системы трабопроводов, теплового насоса, с возможностью накопления тепловой энергии в тепловом аккумуляторе, с управлением процессом получения тепла, его транспортировки, хранения и использования на объекте теплоснабжения с помощью автоматизированной системы, а также обеспечение возможности увеличения срока службы трансформатора за счёт формирования более равномерного распределения температур в пространстве бака и снижения амплитуды её колебаний.

Вышеуказанный технический результат достигается тем, что в предлагаемом способе использования избыточного тепла силового масляного трансформатора для обогрева расположенных поблизости объектов, заключающемся в отборе тепла от силового трансформатора и передаче его в контур отопления помещения или другого объекта, согласно изобретению, отбирают с помощью промежуточного теплоносителя, проходящего через двухконтурный спиральный трубчатый теплообменник, установленный в баке силового трансформатора, избыточное тепло из трансформаторного масла и направляют его с помощью циркуляционных насосов, в случае отсутствия необходимости в обогреве объекта, по системе трубопроводов через многоходовой клапан к горизонтальному грунтовому теплообменнику, который размещён в тепловом аккумуляторе, выполненном в виде теплоизолированного объема смеси гранитного щебня и речного песка, отбирают тепло от промежуточного теплоносителя в тепловой аккумулятор, после чего охлажденный теплоноситель вновь направляют в спиральный трубчатый теплообменник силового трансформатора, а в случае необходимости обогрева объекта теплоснабжения нагретый теплоноситель от спирального трубчатого теплообменника по трубопроводам направляют с помощью многоходовых клапанов к тепловому насосу, с помощью которого повышают потенциал полученной тепловой энергии и передают её в контур отопления объекта теплоснабжения, возвращают охлажденный промежуточный теплоноситель от теплового насоса в спиральный трубчатый теплообменник трансформатора, в случае возникновения необходимости обогрева объекта при отключенном от электрической сети силовом трансформаторе направляют подогретый от теплового аккумулятора теплоноситель из горизонтального грунтового теплообменника через многоходовые клапаны к тепловому насосу, с помощью которого повышают потенциал полученной тепловой энергии и передают её в контур отопления объекта теплоснабжения, возвращают охлажденный теплоноситель вновь к тепловому аккумулятору, осуществляют управление всеми аппаратами системы и переход на разные режимы работы с помощью управляющего комплекса автоматически в зависимости от параметров режимов работы объекта теплоснабжения, силового трансформатора, теплоносителя и теплового аккумулятора.

Сущность предлагаемого изобретения поясняется чертежом, согласно которому СТ - силовой трансформатор; СТТО - двухконтурный спиральный трубчатый теплообменник; Кстто1 - клапан переключения контуров на входе в СТТО; Кстто2 - клапан переключения контуров на выходе из СТТО; ТбПр1 - трубопровод от СТТО до МХК1; ЦН1 - циркуляционный насос на ТбПр1; МХК1 - многоходовой клапан отводящего контура; ТбПр2 - трубопровод от МХК1 до ТН; ТН - тепловой насос типа «вода-вода»; П - помещение; КО - контур отопления; ЦН2 - циркуляционный насос в КО; ТбПр3 - трубопровод от ТН до МХК2; МХК2 - многоходовой клапан подводящего контура; ТбПр4 - трубопровод от МХК2 до СТТО; ЦН3 - циркуляционный насос на ТбПр4; ТбПр5 - трубопровод от МХК1 до ГГТО; ГГТО - горизонтальный грунтовый теплообменник; ЦН4 - циркуляционный насос на ТбПр5; АкТ - аккумулятор тепла; ТбПр6 - трубопровод от ГГТО до МХК2; ЦН5 - циркуляционный насос на ТбПр6; УК - управляющий комплекс (микроконтроллер); ДТ1 - датчик температуры трансформаторного масла; ДТ2 - датчик температуры воздуха в помещении; ДД1 - датчик давления в трансформаторной зоне; ДД2 - датчик давления в теплоаккумуляторной зоне; ДД3 - датчик давления в теплонасосной зоне; ДД4 - датчик давления в КО; К - канал для размещения трубопроводов и циркуляционных насосов.

Способ реализуется следующим образом.

В бак силового масляного трансформатора СТ, изготовленный желательно из материала с низкой теплопроводностью, помещают двухконтурный теплообменник СТТО. Один контур СТТО является основным, а второй - резервным. Задействование нужных контуров СТТО осуществляется клапанами Кстто1 и Кстто2. Тепло от трансформаторного масла отводится только через СТТО. С помощью датчика ДТ1 контролируется температура трансформаторного масла. Теплообменник СТТО соединен с трубопроводами ТбПр1 и ТбПр4, на противоположных концах которых установлены многоходовые клапаны МХК1 и МХК2. Эти клапаны являются «регулировщиками» и управляют направлением потоков теплоносителя в системе, разделяя её на три условные зоны: трансформаторную, теплоаккумуляторную и теплоснасосную. В данном абзаце рассмотрена трансформаторная зона. Циркуляция теплоносителя в этой зоне обеспечивается насосами ЦН1 и ЦН3, а давление контролируется датчиком ДД1.

В теплоаккумуляторной зоне с МХК1 и МХК2 соединены трубопроводы ТбПр5 и ТбПр6, на противоположных концах подключенные к теплообменнику ГГТО. ГГТО укладывается в аккумулятор тепла АкТ двумя слоями: первый на глубине 0,5 м от поверхности, а второй - на 0,5 м ниже первого. АкТ представляет собой теплоизолированный объем смеси гранитного щебня и речного песка в соотношении 2,6/1. Циркуляция теплоносителя в этой зоне обеспечивается насосами ЦН4 и ЦН5, а давление контролируется датчиком ДД2.

В теплонасосной зоне к МХК1 и МХК2 присоединены трубопроводы ТбПр2 и ТбПр3, подключенные на другом конце к тепловому насосу ТН. Давление в них контролируется датчиком ДД3. В свою очередь ТН подсоединен к контуру отопления помещения КО или иного потребителя тепла. Циркуляцию теплоносителя в КО осуществляет ЦН2, а за давлением в КО следит датчик ДД4. Во всей системе, кроме ТН (в нём используется фреон), в качестве теплоносителя используется смесь воды и спирта.

Общий контроль над системой и управление ей осуществляет комплекс УК на базе микроконтроллера. Кроме перечисленных датчиков для управления работой элементов дополнительно в помещении устанавливают датчик ДТ2. На основе данных со всех датчиков микроконтроллер дает команды управляемым элементам согласно заданной программе.

Предложенная система использования избыточного тепла силовых трансформаторов имеет три режима работы: охладительный, отопительно-охладительный и отопительный.

Охладительный режим служит главным образом для охлаждения элементов силового трансформатора, а в дополнение способствует накоплению тепла в АкТ. Данный режим соответствует периоду, когда температура воздуха в помещении - выше +18°С, что контролируется датчиком ДТ2. В этом случае микроконтроллер задействует в работе только трансформаторную и теплоаккумуляторную зоны системы. Выделяемое активными элементами СТ избыточное тепло отводится через трансформаторным масло к СТТО, в котором протекает холодный жидкий теплоноситель. Движимая по СТТО насосами ЦН1 и ЦН3, эта жидкость нагревается до температуры около + 30°С, охлаждая трансформатор. От СТТО нагретый теплоноситель стремится по ТбПр1 к МХК1, который направляет его по трубопроводу ТбПр5 к ГГТО. В теплообменнике ГГТО происходит обратный теплообмен нагретого теплоносителя с холодным АкТ. Далее вновь охлажденный до температуры около + 15°С теплоноситель, движимый ЦН4 и ЦН5, протекает до клапана МХК2 и направляется по ТбПр4 вновь в СТТО. Насосы ЦН2 и ТН в охладительном режиме остаются отключенными.

Когда температура в помещении опускается ниже + 18°С, УК переводит систему в охладительно-отопительный режим работы. При этом микроконтроллер сначала отключает ЦН4 и ЦН5, далее изменяет положение МХК1 и МХК2, исключая их контура теплоаккумуляторную зону и задействуя теплонасосную. После этого УК последовательно включает ТН и ЦН2. В итоге теплоноситель от СТТО по ТбПр1 через МХК1 и трубопровод ТбПр2 попадает в тепловой насос ТН. В нем тепло от нагретого теплоносителя передается фреону (теплоноситель в ТН), который, проходя через компрессор в ТН, повышает свою тепловую энергию и передает её в КО. Когда температура в помещении поднимается выше + 24°С, микроконтроллер в обратном порядке вновь переводит систему в охладительный режим.

В случае же когда происходит плановое или аварийное отключение силового трансформатора от питающей электрической сети, есть два варианта действия системы. Если в момент отключения трансформатора система находилась в охладительном режиме, то УК переводит систему в режим ожидания, отключая насосы ЦН1, ЦН3, ЦН4 и ЦН5 и оставляя состояние остальных аппаратов неизменным. Если же в дальнейшем температура воздуха в помещении опустится ниже +18°С, то УК запустит отопительный режим работы. При этом сначала микроконтроллер переведет клапаны МХК1 и МХК2 в положение, исключающее из контура трансформаторную зону и включающее теплоаккумуляторную, а затем включит последовательно ЦН4, ЦН5, ТН и ЦН2.

Если же в момент отключения трансформатора система находилась в отопительно-охладительном режиме, то УК сразу переводит систему в отопительный режим, действуя в следующем порядке. Сначала микроконтроллер отключает насосы ЦН1 и ЦН3, далее изменяет положение МХК1 и МХК2, исключая их контура трансформаторную зону и задействуя теплоаккумуляторную. После чего включает в работу ЦН4 и ЦН5. Когда в отопительном режиме температура воздуха в помещении поднимается выше + 24°С, то УК последовательно отключает ЦН2, ТН, ЦН5 и ЦН4, оставляя остальные аппараты в неизменном состоянии.

При включении силового трансформатора к сети УК переводит систему в охладительный или отопительно-охладительный режим (в зависимости от показаний датчика ДТ2) только после нагрева трансформаторного масла до температуры выше + 65°С, что контролируется датчиком ДТ1. Переключение элементов системы при включении силового трансформатора происходит в обратном порядке, чем в случае его отключения. Также программой УК предусмотрена регулировка оборотов насосов ЦН1, ЦН3, ЦН4 и ЦН5 в зависимости от температуры трансформаторного масла: она должна находится в пределах + 60-70°С. То есть если ДТ1 показывает температуру ниже + 60°С, то обороты снижаются, а если выше + 70°С, то обороты повышаются. Если же после повышения оборотов насосов до предельного значения температура масла продолжает расти (возможно при сильной перегрузке силового трансформатора), то микроконтроллер подает об этом сигнал на пост диспетчерского пункта и с помощью клапанов Кстто1 и Кстто2 подключает к работе резервный контур спирального трубчатого теплообменника до тех пор, пока температура масла не опустится ниже + 60°С.

Если вдруг один из датчиков давления сообщает о недопустимом падении или повышении давления в системе, то об этом подается сигнал на пост диспетчерского пункта и соответствующая зона системы выводится из работы. Так если срабатывает датчик ДД1, то система переводится в отопительный режим работы или режим ожидания, силовой трансформатор при этом отключается. Если срабатывает датчик ДД2, то система переводится в отопительно-охладительный режим работы или режим ожидания. Если срабатывает датчик ДД3 и (или) ДД4, то система переводится в охладительный режим работы или режим ожидания. Если же после смены режима срабатывает и второй датчик давления (кроме случая, когда срабатывают ДД3 и ДД4), то вся система переводится в режим ожидания, клапаны МХК1 и МХК2 перекрывают все трубопроводы, а силовой трансформатор отключается до восстановления нормального давления в системе.

Применение предлагаемого способа, позволяет использовать силовой трансформатора в качестве источника теплоснабжения для расположенных вблизи от него объектов, обеспечить увеличения срока службы трансформатора за счёт формирования более равномерного распределения температур в пространстве бака и снижения амплитуды её колебаний.

Способ использования избыточного тепла силового масляного трансформатора для обогрева расположенных поблизости объектов, заключающийся в отборе тепла от силового трансформатора и передаче его в контур отопления помещения или другого объекта, отличающийся тем, что избыточное тепло из трансформаторного масла отбирают с помощью промежуточного теплоносителя, проходящего через двухконтурный спиральный трубчатый теплообменник, установленный в баке силового трансформатора, и направляют его с помощью циркуляционных насосов, в случае отсутствия необходимости в обогреве объекта, по системе трубопроводов через многоходовой клапан к горизонтальному грунтовому теплообменнику, который размещён в тепловом аккумуляторе, выполненном в виде теплоизолированного объема смеси гранитного щебня и речного песка, отбирают тепло от промежуточного теплоносителя в тепловой аккумулятор, после чего охлажденный теплоноситель вновь направляют в спиральный трубчатый теплообменник силового трансформатора, а в случае необходимости обогрева объекта теплоснабжения нагретый теплоноситель от спирального трубчатого теплообменника по трубопроводам направляют с помощью многоходовых клапанов к тепловому насосу, с помощью которого повышают потенциал полученной тепловой энергии и передают её в контур отопления объекта теплоснабжения, возвращают охлажденный промежуточный теплоноситель от теплового насоса в спиральный трубчатый теплообменник трансформатора, в случае возникновения необходимости обогрева объекта при отключенном от электрической сети силовом трансформаторе направляют подогретый от теплового аккумулятора теплоноситель из горизонтального грунтового теплообменника через многоходовые клапаны к тепловому насосу, с помощью которого повышают потенциал полученной тепловой энергии и передают её в контур отопления объекта теплоснабжения, возвращают охлажденный теплоноситель вновь к тепловому аккумулятору, осуществляют управление всеми аппаратами системы и переход на разные режимы работы с помощью управляющего комплекса автоматически в зависимости от параметров режимов работы объекта теплоснабжения, силового трансформатора, теплоносителя и теплового аккумулятора.



 

Похожие патенты:

Геотермальная теплонасосная система относится к области энергосберегающего теплохладоснабжения с использованием нетрадиционных возобновляемых источников энергии, в данном случае - теплоты грунтового массива.

Изобретение относится к области строительства и может быть использовано для экологически и энергетически эффективного теплохладоснабжения зданий и сооружений с помощью теплонасосной системы, использующей низкопотенциальную теплоту грунтового массива, в частности к устройству грунтовых теплообменников.

Изобретение относится к области городского транспорта, а именно к теплоснабжению и вентиляции метрополитена. Способ теплохладоснабжения метрополитена заключается в том, что термодинамическую обработку вентиляционного воздуха осуществляют путем нагрева или охлаждения приточного воздуха за счет теплоты или хладоресурса вытяжного воздуха путем последовательно реализуемых процессов рекуперации и обработки с помощью теплонасосной системы, содержащей тепловой насос, теплообменники и циркуляционный контур испарителя с теплообменником и циркуляционный контур конденсатора с теплообменником.

Изобретение относится к области энергосбережения, в частности к использованию низкопотенциальной тепловой энергии грунтового массива с помощью тепловых насосов. Способ работы системы грунтовых теплообменников, использующей с помощью теплового насоса тепловую энергию или хладоресурс грунтового массива.

Изобретение относится к устройству рекуперации отводимого отработанного тепла с комбинированной выработкой тепла и электроэнергии (СНР) при пиковой электрической нагрузке и к способу его работы.

Изобретение относится к системе аккумулирования тепловой энергии, содержащей аккумулятор (2) энергии, обладающий вертикальным температурным градиентом, и внутреннюю комбинированную холодильно-нагревательную машину (15).

Изобретение относится к теплоэнергетике и может быть использовано в системах теплоснабжения зданий и сооружений различного назначения с применением тепловых насосов, обеспечивающих отопление, подогрев приточного вентиляционного воздуха и производство бытовой горячей воды.

Предлагается устройство, содержащее теплонасосное оборудование и систему сбора низкопотенциальной теплоты грунта, состоящую из двух и более зон, параллельно подключенных к теплонасосному оборудованию, каждая из которых, в свою очередь, включает один и более вертикальных герметичных грунтовых теплообменников коаксиального типа с внутренней трубой, покрытой теплоизолирующим слоем пористого материала с замкнутыми порами.

Изобретение относится к области теплоэнергетики и систем водоснабжения и может быть использовано при обеспечении потребителей теплотой, горячей и холодной водой.

Изобретение относится к способам аккумулирования энергии в когенерационных системах, работающих в цикле тригенерации, в системах извлечения геотермальной энергии абсорбционным тепловым насосом, в системах использования низкопотенциальной тепловой энергии с помощью абсорбционного теплового насоса.
Наверх