Способ ускорения репаративного остеогенеза при бисфосфонатном остеонекрозе



Способ ускорения репаративного остеогенеза при бисфосфонатном остеонекрозе
Способ ускорения репаративного остеогенеза при бисфосфонатном остеонекрозе
Способ ускорения репаративного остеогенеза при бисфосфонатном остеонекрозе
Способ ускорения репаративного остеогенеза при бисфосфонатном остеонекрозе

Владельцы патента RU 2745584:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Ставропольский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО СтГМУ Минздрава России) (RU)
Сирак Екатерина Сергеевна (RU)
Сирак Сергей Владимирович (RU)

Изобретение относится к области медицины, в частности стоматологии и челюстно-лицевой хирургии, и раскрывает способ ускорения репаративного остеогенеза при бисфосфонатном остеонекрозе, включающий использование хонсурида, растворенного в рибофлавине и гиалуроновой кислоте, с последующим добавлением полученной смеси к гелиокомпозиту в заданном соотношении. Изобретение позволяет ускорить формирование костного регенерата после удаления некротизированной кости при бисфосфонатном остеонекрозе, исключив инфицирование за счет надежной герметизации раны и может быть использовано при операциях по восстановлению утраченного объема костной ткани. 4 ил., 2 пр

 

Изобретение относится к медицине, в частности, стоматологии и челюстно-лицевой хирургии, и может быть использовано при операциях по восстановлению утраченного объема костной ткани при бисфосфонатных остеонекрозах челюстных костей.

Известно, что в целом ряде патологических состояний организма, связанных с нарушением репаративного остеогенеза, таких, как, переломов челюстных костей, осложненных остеопорозом, инфицированием и ослаблением иммунитета, ложных суставах и послеоперационных дефектах верхней и нижней челюстей после цистэктомий и цистотомий требуется направленная стимуляция костеобразования, которая выполняется хирургом путем проведения операции остеопластики.

Для ускорения репаративного процесса активно используют остеопластические биоматериалы, которым присущи остеоиндуктивные и/или остеокондуктивные свойства, причем первый вариант наиболее предпочтителен, поскольку под остеоиндукцией в стоматологии и челюстно-лицевой хирургии понимают собственно, сам остеогенез, дентиногенез и рост пародонтальной связки.

Истинным остеоиндуктивным костным биоматериалом является только собственная кость пациента, однако ее дефицит и сложности по забору и хранению привели к более широкому использованию аналогов - аллогенной кости, где донором является другой индивидуум. Поэтому сегодня очень широко используют модификации остеопластических материалов на основе гидроксида кальция, например, в виде пористой гидроксиапатитной керамики и трикальцийфосфата (Tanaka, Т., Komaki, Н., Chazono, М., Kitasato, S., Kakuta, A., Akiyama, S., Marumo, K. Basic research and clinical application of beta-tricalcium phosphate (β-TCP). Morphologie. 2017; 101(334):164-172. https://doi.org/10.1016/j.morpho.2017.03.002), а также костезамещающие биоматериалы на основе костного коллагена и морфогенетических белков (Song, Y., Wan, L., Zhang, S., Du, Y. Biological response to recombinant human bone morphogenetic protein-2 on bone-implant osseointegration in ovariectomized experimental design. Journal of Craniofacial Surgery. 2019; 30(1): 141-144. https://doi.org/10.1097/SCS. 0000000000004992). Всем перечисленным выше биоматериалам присущи только остеокондуктивные свойства, в это понятие включается способность материала служить матрицей, основой для роста новообразованной костной ткани. Для проявления остеоиндуктивных свойств в составе таких биоматериалов должны присутствовать факторы роста и другие стимулирующие остеогенез вещества, например, сульфатированные или несульфатированные гликозаминогликаны (гиалуроновая кислота).

В этой связи проблема ускорения репаративного остеогенеза имеет большую актуальность и разработка способа ускорения репаративного остеогенеза с использованием остеопластических материалов, представляет большую практическую значимость.

Одним из опасных осложнений антирезорбтивной терапии при лечении метастатических поражений скелетных костей (при раке молочной железы и простаты), множественной миеломы у онкологических больных, а также остеопороза, с использованием аналогов пирофосфата, является бисфосфонатный остеонекроз челюстей. Данное осложнение клинически проявляется в виде оголения и последующего омертвления целого участки верхней или нижней челюсти, причем некроз может затрагивать не только кортикальную кость, но и сам костный мозг. Достоверно известно, что бисфосфонаты, действие которых заключается в основном, в блокировке самообновления кости за счет преобразований в клеточной структуре остеокластов, обладают достаточно высоким сродством к костной ткани, аккумулируются в ней до тех пор, пока не будут резорбированы новым поколением клеток-остеокластов, что является длительным и трудноустранимым явлением. В этой связи, даже при отмене использования бисфосфонатов у пациентов с бисфосфонатным остеонекрозом челюстных костей остаются длительно незаживающие очаги деструкции костной ткани, в которых процесс самообновления костной ткани остановлен.

Такие некротизированные участки кости удаляют хирургическим путем до здоровой кости, операция имеет сходный характер с секвестрэктомией и компактостеотомии при остеомиелите костной ткани. Затем с целью повышения эффективности репаративного остеогенеза послеоперационные костные полости заполняют аутокостью, пористой гидроксиапатитной керамикой, костным коллагеном, а также другими биоматериалами, используемыми для стимулирования репаративных процессов в челюстных костях: «Биальгин», «Остеогенокс», «Биоматрикс», «Коллапан» и другие. Все они в той или иной степени обладают остеотропными, гемостатическими и антибиктериальными свойствами и иммунной инертностью, несут положительные и отрицательные стороны.

В аспекте ускорения репаративного остеогенеза в костных полостях после удаления пораженных участков костной ткани челюсти при бисфосфонатном остеонекрозе наиболее близким предлагаемому способу по технической сути и достигаемому результату является использование полисахарида животного происхождения хонсурида для заполнения послеоперационных костных полостей (RU 2112550 С1, заявка на изобретение RU №94027755/14 от 20.07.1994, МГЖ А61К 6/097).

Установлено, что использование хонсурида ускоряет течение репаративного остеогенеза в послеоперационных костных полостях челюстей при достаточном кровоостанавливающем и противовоспалительном эффекте, а также хорошей биосовместимости и простой методике применения.

Вместе с этим, при использовании хонсурида скорость репаративного остеогенеза невелика, поскольку формирование полноценного костного регенерата в послеоперационной костной полости происходит не ранее 6 месяцев после хирургического вмешательства. Кроме этого, при бисфосфонатном остеонекрозе челюсти чаще всего происходит поражение кости вместе со слизистой оболочкой полости рта, это требует изоляции и герметизации раны от слюны ввиду высокой вероятности присоединения вторичной инфекции, что не всегда возможно обеспечить только за счет пластики местными тканями.

Поставлена задача: ускорить формирование костного регенерата после удаления некротизированной кости при бисфосфонатном остеонекрозе, исключив инфицирование за счет надежной герметизации раны.

Поставленная задача решена путем использования смеси хонсурида, рибофлавина и гиалуроновой кислоты, введенных в состав гелиокомпозита, отверждаемого после помещения в рану под действием ультрафиолетовых лучей мощностью 450 мВт с длиной волны 450-470 нм в течение 40 секунд.

Хонсурид использован в виде стерильного деминерализованного и лиофилизированного (лишенного антигенной активности) порошка, представляющего собой полисахарид животного происхождения, способствующий формированию новых коллагеновых микрофибрилл, необходимых для восстановления трабекулярной структуры костной ткани в процессе репаративного остеогенеза в костных полостях челюстей в послеоперационном периоде.

Рибофлавин (витамин В2) ускоряет рост и регенерацию клеток, участвует в обезвреживании токсинов и других вредных веществ, оказывает антиоксидантное действие, регулирует окислительно-восстановительные процессы. Известно, что рибофлавин разрушается на свету (поэтому его рекомендуют хранить в темном месте), однако, при воздействии ультрафиолетовых лучей высокой интенсивности происходит активизация рибофлавина, в результате которой он оказывается способным сшивать коллагеновые волокна (Источники: https://www.vesti.ru/doc.html?id=3248406; https://news.cornell.edu/stories/2020/03/two-step-method-patches-herniated-disc).

Гиалуроновая кислота является активным хондропротекторным средством, оказывает стимулирующее влияние на репаративные процессы в структурах соединительнотканного происхождения, а также способствует ингибированию в них дистрофических посттравматических процессов. Механизмом репаративного действия гиалуроновой кислоты выступает стимулирование синтеза гликозаминогликанов и коллагена.

Суть лечебного воздействия разработанного способа заключается в следующем. Воздействие ультрафиолетовых лучей мощностью 450 мВт с длиной волны 450-470 нм в течение 40 секунд активирует рибофлавин, в результате чего хонсурид из смеси и коллагеновые волокна из раны соединяются, формируя вместе с гелиокомпозитом прочную и герметичную костную пломбу. В течение короткого промежутка времени (1-6 часов) под стимулирующем влиянием 2% гиалуроновой кислоты в рану начинают мигрировать плюрипотентные клетки из неповрежденных участков костной ткани, способствуя ускорению репаративного остеогенеза и формированию трабекулярной структуры новообразованной кости, которая через 2-3 месяца полностью замещает гелиокомпозит.

Способ осуществляется следующим образом. Производят разведение 40 мг хонсурида в рибофлавине и 2% гиалуроновой кислоте с последующем добавлением полученной смеси к гелиокомпозиту из расчета 40 мг хонсурида на 20 мг рибофлавина, 40 мг 2% гиалуроновой кислоты и 120 мг гелиокомпозита. Полученную смесь вносят на шпателе в рану, аккуратно утрамбовывая по краям костной раны и отверждают с помощью стоматологической фотополимеризационной лампы ультрафиолетовыми лучами мощностью 450 мВт с длиной волны 450-470 нм в течение 40 секунд. В результате получается прочная герметичная костная заплата на месте костной раны, которая не требует дополнительной изоляции от слюны лоскутом из местных тканей.

Опыт использования разработанного способа показал, что во всех случаях его применения отмечается ускорение репаративного остеогенеза без воспалительных осложнений и рецидивов заболевания, подтвержденное клиническими примерами, которые приводим ниже.

1. Больная С., 55 лет, обратилась с жалобами на боли в районе верхней челюсти слева, неприятный запах изо рта, периодическое появление гноя в полости рта в области оголенных участков кости вокруг 22, 23, 24 зубов (фиг. 1). Из анамнеза установлено, что больная наблюдается у онколога с диагнозом «Первичный множественный рак левой молочной железы, T2N1M0, состояние после проведенного комплексного лечения (мастэктомия слева, лучевая, бисфосфонатотерапия): прогрессирование в кости таза, головки бедренных костей, в область челюстных костей стабилизация процесса». Больная принимала препараты золедроновой кислоты по 40 мг внутривенно 1 раз в 2,5 месяца в течение 3 лет.

Лечение. Под инфильтрационной и проводниковой анестезией Sol.Ultracaini 4% с адреналином 1:100000 выполнена операция с удалением небной кортикальной пластинки вокруг 22, 23, 24 зубов по поводу бисфосфонатного остеонекроза верхней челюсти (фиг. 2) с кюретажем раны и удалением грануляций. Послеоперационная костная полость диаметром 35 мм во время операции заполнена смесью хонсурида, рибофлавина и гиалуроновой кислоты, введенных в состав гелиокомпозита, отвержденного после помещения в рану под действием ультрафиолетовых лучей мощностью 450 мВт с длиной волны 450-470 нм в течение 40 секунд.

В результате достигнута надежная герметизация раны и обеспечено ускорение репаративного остеогенеза, что подтверждено результатами дальнейшего клинического наблюдения. Динамическое наблюдение в раннем послеоперационном периоде (1-7 суток) показало, что у больной отсутствовали болевой синдром, гноетечение и отек околочелюстных мягких тканей. При рентгенологическом обследовании в позднем послеоперационном периоде (через 3 месяца) установлено, что заживление послеоперационного костного дефекта завершилось формированием полноценного костного регенерата со средней плотностью 450 ЕД Хаунсфилда.

На фиг. 1 изображен участок оголенной некротизированной кортикальной пластинки верхней челюсти (1) больной С. в области отсутствующих 22, 23, 24 зубов (2) до операции.

На фиг. 2 изображен фрагмент удаленной у больной С. некротизированной кортикальной пластинки кости верхней челюсти (3) и грануляции (4).

2. Больной К., 47 лет, обратился с жалобами на боли в области нижней челюсти с иррадиацией по ходу 2 ветви V пары черепно-мозговых нервов слева, общую слабость, дефект слизистой оболочки полости рта с оголением костной ткани челюсти и гноетечение из свищевого хода на месте отсутствующего 37 зуба. Из анамнеза установлено, что больной наблюдается у онколога с диагнозом «Рак предстательной железы, T2N1M0, состояние после проведенного комплексного лечения (лучевая, бисфосфонатотерапия): прогрессирование в область челюстных костей, позвоночника, стабилизация процесса». Больной принимал препараты золедроновой кислоты по 40 мг внутривенно 1 раз каждые 2 месяца в течение 2 лет. Лечение. Под инфильтрационной и проводниковой анестезией Sol. Ultracaini 4% с адреналином 1:100000 больному К. выполнена операция с удалением некротизированной костной ткани по поводу бисфосфонатного остеонекроза в области тела и ветви нижней челюсти слева (фиг. 3).

Послеоперационная костная полость диаметром 49 мм во время операции заполнена смесью хонсурида, рибофлавина и гиалуроновой кислоты, введенных в состав гелиокомпозита, отвержденного после помещения в рану под действием ультрафиолетовых лучей мощностью 450 мВт с длиной волны 450-470 нм в течение 40 секунд. В результате достигнута надежная герметизация раны и обеспечено ускорение репаративного остеогенеза, что подтверждено результатами дальнейшего клинического наблюдения. Клиническое наблюдение показало, что в послеоперационном периоде у больного отсутствовали болевой синдром и отек околочелюстных мягких тканей. При динамическом обзорном рентгенологическом обследовании в сроки 1-4 месяца после операции выявлено ускоренное заживление оперированного участка остеонекроза, который заполнился сформированной молодой костной тканью плотностью 475 ЕД Хаунсфилда спустя 4 месяца после операции (фиг. 4).

На фиг. 3 изображена ортопантомограмма больного К., выполненная до операции, на которой отчетливо видны очаги деструкции и некроза костной ткани в области тела (5) и ветви (6) нижней челюсти слева.

На фиг. 4 изображена ортопантомограмма больного К., выполненная через 4 месяца после операции с удалением некротизированной костной ткани по поводу бисфосфонатного остеонекроза, на которой видно успешное восстановление плотности кости в области тела (7) и ветви (8) нижней челюсти слева.

Таким образом, в результате применения заявляемого способа обеспечивается ускорение репаративного остеогенеза при бисфосфонатном остеонекрозе, репарация кости происходит с образованием полноценной трабекулярной структуры, полностью идентичной нативной кости, отсутствует иммунный ответ даже в больших по протяженности костных ранах, достигается надежная герметизация раны, исключающая инфицирование.

Способ ускорения репаративного остеогенеза при бисфосфонатном остеонекрозе, включающий использование хонсурида, отличающийся тем, что производят разведение хонсурида в рибофлавине и 2% гиалуроновой кислоте, с последующим добавлением полученной смеси к гелиокомпозиту из расчета: 40 мг хонсурида на 20 мг рибофлавина, 40 мг 2% гиалуроновой кислоты и 120 мг гелиокомпозита, внесение полученного состава в рану и отверждение его в течение 40 секунд фитополимеризационной лампой мощностью 450 мВт с диной волны 450-470 нм.



 

Похожие патенты:

Настоящее изобретение относится к содержащему соль кальция композиционному порошку, к способу его получения, к его применению, а также к конструкционным деталям, получаемым методом селективного лазерного спекания, кроме имплантатов для вариантов применения в области нейрохирургии, хирургии ротовой полости, челюстно-лицевой хирургии, хирургии в области шеи, носа и ушей, а также хирургии в области рук, ног, грудной клетки, ребер и плеч.

Группа изобретений относится к области медицины, в частности к эндопротезированию, и раскрывает биологическую ткань, представляющую собой коллагенсодержащую ткань млекопитающих, для имплантируемого биопротеза, используемого в сердечно-сосудистой хирургии и представляющего собой аортальный клапан, имплантируемый биопротез и способы их получения.

Изобретение относится к медицине. Удобная вкладка содержит удерживающую структуру, имеющую размер, подходящий для ее размещения под веками и вдоль по меньшей мере части конъюнктивального мешка верхнего и нижнего век глаза.
Группа изобретений относится к области медицины, а именно к стабильной пептидной композиции, включающей: самособирающийся пептид; буферный агент, содержащий по меньшей мере одно вещество, выбранное из группы, состоящей из гистидина, нитрата тиамина, пиридина, бис-триса, этилендиамина и/или N-метилморфолина; и воду, при этом стабильная пептидная композиция имеет рН от 4,5 до 6,6; причем суммарный заряд аминокислотных остатков, содержащихся в самособирающемся пептиде, составляет между более 0 и +3 или менее в стабильной пептидной композиции; при этом С-конец самособирающегося пептида включает амидную группу; причем аминокислота на С-конце самособирающегося пептида включает основную аминокислоту; при этом самособирающийся пептид образован из следующей аминокислотной последовательности: a1b1c1b2a2b3db4a3b5c2b6a4, где каждый остаток a1-a4 представляет собой основной аминокислотный остаток, каждый остаток b1-b6 представляет собой незаряженный полярный аминокислотный остаток и/или гидрофобный аминокислотный остаток, при условии, что по меньшей мере пять из них представляют собой гидрофобный аминокислотный остаток, каждый остаток c1-c2 представляет собой кислотный аминокислотный остаток и d представляет собой гидрофобный аминокислотный остаток; причем самособирающийся пептид содержит пептид, образованный аминокислотной последовательностью: n-RLDLRLALRLDLR-c (SEQ ID NO: 1), n-RLDLRLSLRLDLR-c (SEQ ID NO: 2), n-RLALRLDLRLDLR-c (SEQ ID NO: 3), n-KRLDLNLRLDLRK-c (SEQ ID NO: 4), а также относится к способу получения стабильной пептидной композиции.

Изобретение относится к медицине, в частности к стоматологии и челюстно-лицевой хирургии, и может быть использовано при операциях по восстановлению утраченного объема костной ткани после удаления одонтогенных кист челюстей.

Изобретение может быть использовано при получении конструкционных деталей, в медицинской технике, в микротехнике, для получения вспененных предметов. Композиционный порошок содержит микроструктурированные частицы, содержащие карбонат кальция, причем крупные частицы объединены с мелкими частицами.

Настоящее изобретение относится к устройству медицинских имплантатов. Указанное устройство включает частично сшитый полиуретановый полимер.

Изобретение относится к области медицины, а именно к челюстно-лицевой хирургии, и раскрывает способ костной пластики нижней челюсти. Способ заключается в выращивании костной ткани путем имплантации в толщу губчатой части подвздошной кости имплантата из пористого политетрафторэтилена, имплантат включает реконструктивную пластину для нижней челюсти, обвитую нетканым титановым материалом со сквозной пористостью, пластину имплантируют в губчатую часть подвздошной кости методом наложения имплантата на предварительно декортицированный гребень подвздошной кости с последующим выращиванием на период 4 недели, имплантат устанавливают в область костного дефекта нижней челюсти, далее подготовленный имплантат с насыщенной костной тканью интраоперационно вторично обвивают нетканым титановым материалом в соответствии с недостающим объемом мягких тканей в области нижней челюсти, формируя демпферную подушку, на которую равномерно наносят взвесь аутологичных мультипотентных мезенхимальных стромальных клеток, после этого концы пластины фиксируют к нижней челюсти винтами для фиксации.

Изобретение относится к медицине, а именно к травматологии, ортопедии, стоматологии и может быть использовано в качестве покрытия для внутрикостных имплантатов, выполненных из сплавов титана.

Изобретение относится к содержащим карбонат кальция композиционным порошкам с микроструктурированными частицами, к способу их получения и к их применению. В способе получения композиционного порошка крупные частицы соединяются с мелкими частицами.

Группа изобретений относится к биотехнологии и медицине. Предложены фармацевтическая комбинация и способ для лечения немелкоклеточного рака легких на основе 5-бром-2,6-ди-(1Н-пиразол-1-ил)пиримидин-4-амина, а также применение 5-бром-2,6-ди-(1Н-пиразол-1-ил)пиримидин-4-амина для лечения рака.
Наверх