Способ сжатия и воспроизведения экг

Изобретение относится к области кардиологии. Технический результат заключается в повышении степени сжатия ЭКГ. Предлагается способ сжатия и воспроизведения ЭКГ, реализуемый за счет того, что сигналы в отведениях имеют значительные взаимные корреляции и могут быть экономно представлены в базисе, учитывающем эти связи, что позволяет кратно повысить степень сжатия при хранении и обеспечить допустимую ошибку при восстановлении ЭКГ. 1 табл., 10 ил.

 

Область техники

Изобретение «Способ сжатия и воспроизведения ЭКГ» (ССВ ЭКГ) относится к кардиологии и представляет собой решение для хранения ЭКГ в сжатом виде, а также обеспечивает воспроизведение ЭКГ с минимальными ошибками. При использовании совместно с устройством хранения и анализа ЭКГ (УХА ЭКГ), отвечающим формуле полезной модели [1], ССВ ЭКГ позволяет для сравнительно длинных ЭКГ многократно повысить степень сжатия ЭКГ, что особенно важно при холтеровском мониторировании.

Уровень техники

В основе ССВ ЭКГ лежит обработка синхронных ансамблей (СА) PQRST-комплексов [2] исходной ЭКГ, в отведениях из которых формируется объединенный синхронный ансамбль отведений (ОСАО). СА каждого отдельного отведения формируется так же, как и в кардиоайгеноскопе [4] и УХА ЭКГ [1], которые рассматриваются в качестве аналога и прототипа, соответственно.

УХА ЭКГ использует ортонормированный базис (ОНБ) [5] собственных векторов (СВ) ковариационной матрицы (КМ) [5], позволяющий наилучшим образом представлять PQRST-комплекс на конечном интервале анализа (КИА) [6].

Технический результат в предлагаемом решении достигается, прежде всего, за счет использования при сжатии ЭКГ меньшего числа собственных векторов, чем в прототипе, что позволяет в разы увеличить степень сжатия ЭКГ и повысить точность воспроизведения ЭКГ - за счет того, что собственные векторы, построенные с использованием КМ для ОСАО, учитывают корреляционные связи между отведениями ЭКГ.

На фиг. 1 и фиг. 2 приведены конструкции УХА ЭКГ (прототип) и кардиоайгеноскопа (аналог), соответственно.

В состав УХА ЭКГ входят:

- блок авторизации и доступа 1;

- блок задания режимов работы, контроля сжатия, хранения и выборки 2;

- кардиоайгено скоп 3.

В кардиоайгеноскоп (фиг. 2) входят:

- блок формирования ансамбля кардиоосцилляций 4;

- блок вычислителя матрицы смешанных моментов 5;

- блок вычислителя собственных векторов и собственных значений 6;

- блок восстановления кардиосигнала и анализа признаков 7.

Кардиоайгеноскоп [4] обрабатывает последовательные сегменты оцифрованной ЭКГ, в которую, укладывается несколько десятков PQRST-комплексов, имеющих заданную длительность N дискретов. Сигнал PQRST-комплекса на j-ом КИА задается последовательностью дискретных отсчетов, записанных в матрицу-столбец Xj=[S1,j; S2,j; …; SN,j] так, что R-пики ЭКГ привязаны к определенному заранее заданному дискретному моменту времени на КИА. Размер КИА N выбирается заведомо большим длительности PQRST-комплекса. Из столбцов Xj, формируется матрица синхронного ансамбля с размером N×R, где R - число элементов СА (число PQRST-комплексов в обрабатываемом сегменте ЭКГ). Все эти операции выполняются в блоке формирования ансамбля кардиоосцилляций 4.

На основании матрицы ансамбля WN×R в блоке вычислителя матрицы смешанных моментов 5 определяется КМ СА, задаваемая соотношением

где (…)' означает транспонирование матрицы.

Для КМ (1) находятся собственные векторы (СВ) и собственные значения (СЗ), удовлетворяющие соотношению [5]

где ψi - собственный вектор (матрица-столбец),

λi - собственное значение (число).

Количество СВ и СЗ совпадает с размером КМ и равно N [5]. КМ симметрична и неотрицательно определена [5], то есть . СВ КМ образуют ортонормированный базис (ОНБ) [5], следовательно, если i≠j, а .

Все R PQRST-комплексов, записанные в виде столбцов в матрицу WN×R, могут быть представлены в виде

где

ψN×N=[ψ1, …, ψN] - квадратная матрица, в которую в качестве столбцов записаны все СВ по порядку,

- матрица коэффициентов разложения элементов СА на КИА, j-ый столбец которой

Соотношения (3) и (4) дают точное представление PQRST-комплексов.

При сжатии достаточно использовать число СВ Z<N; обычно достаточно Z=4. В этом случае соотношения (3) и (4) упрощаются и имеют вид:

где

- аппроксимация WN×R,

αZ×R - матрица коэффициентов аппроксимации СА с использованием Z<N собственных векторов.

Информацию о СЗ, получаемых при решении задачи (2), удобно представлять в виде спектра собственных значений (ССЗ), под которым понимается [3, 5] упорядоченная по убыванию последовательность СЗ. Известно [3], что средняя энергия сигнала, наблюдаемого на интервале длительностью N, определяется соотношением

а каждое собственное значение λi равно вкладу в средней энергии составляющей, соответствующей СВ ψi.

Нормированным спектром собственных значений (НССЗ) мы будем называть последовательность

где - нормированное собственное значение (НСЗ),

N - размерность КМ (размер КИА).

Физический смысл НССЗ состоит в следующем. Каждое значение НССЗ - доля некоррелированной компоненты, соответствующей ψi, в .

В большинстве случаев для представления без потери информации на КИА любого PQRST-комплекса достаточно четырех СВ и четырех коэффициентов разложения.

В [1] показано, что коэффициент сжатия при использовании УХА ЭКГ определяется соотношением

где

N - число дискретов в PQRST-комплексе СА,

R - количество числовых ячеек, необходимое для хранения положений R-зубцов (совпадает с числом элементов в СА),

Z - число СЗ, используемых при сжатии ЭКГ, обеспечивающее заданную точность, определяемую НССЗ ЭКГ.

ССВ ЭКГ позволяет многократно повысить степень сжатия ЭКГ по сравнению с прототипом - устройством хранения и анализа ЭКГ [1].

Раскрытие способа

Цель изобретения - за счет совместной обработки ЭКГ в нескольких отведениях повысить в разы степень сжатия ЭКГ по сравнению с прототипом (УХА ЭКГ).

Результат достигается благодаря тому, что для сжатия используются собственные векторы, получаемые для объединенной ковариационной матрицы, которая в свою очередь получается на основе ОСАО. Ниже будет показано, что это позволяет уменьшить число используемых собственных векторов в число раз, совпадающее с числом используемых отведений ЭКГ.

Пусть при снятии ЭКГ используется G отведений, и для каждого из них построена матрица синхронного ансамбля . Построим из этих матриц блочную матрицу ОСАО, удовлетворяющую соотношению

в которую в качестве блоков друг под другом записываются матрицы СА. Для матрицы ОСАО строится объединенная КМ, аналогично (1)

Для ковариационной матрицы (11) определяются собственные векторы, собственные значения и НССЗ по соотношениям, аналогичным (2) и (6):

где - собственный вектор объединенной КМ (матрица-столбец),

- собственное значение объединенной КМ (число).

Нормированный спектр собственных значений для объединенной КМ определяется соотношением, аналогичным (6)

Остановимся на техническом результате и причинно-следственных связях, определяющих его достижение.

На фиг. 3-6 показаны НССЗ, рассчитанные с использованием соотношения (6) для прототипа и соотношения (10) - для предлагаемого способа. Как следует из фиг. 3а), фиг. 4а), фиг. 5а) и фиг. 6а), НССЗ для прототипа и предлагаемого способа достаточно близки.

На фиг. 3б), фиг. 4б), фиг. 5б) и фиг. 6б) приведены зависимости относительной ошибки при восстановлении ЭКГ от числа используемых СВ. Эти зависимости вычисляются для прототипа и предлагаемого способа по формулам:

Как следует из графиков фиг. 3б) и фиг. 4б), число СВ, необходимых для восстановления ЭКГ с относительной ошибкой 1-5%, для прототипа и предлагаемого способа отличаются незначительно.

Для предлагаемого способа число цифровых ячеек, необходимое для хранения сжатой ЭКГ (по G отведениям), определится формулой

где слагаемые:

Z⋅N⋅G - число числовых ячеек, необходимых для хранения Z СВ для ОСАО, каждый из которых имеет N⋅G отсчетов,

Z - число числовых ячеек, необходимых для хранения СЗ КМ ОСАО,

Z⋅R - число числовых ячеек, необходимых для хранения коэффициентов разложения элементов ОСАО по СВ ОСАО,

R - число числовых ячеек, необходимых для хранения значений RR-интервалов,

1 - ячейка для хранения числа используемых СВ ОСАО.

В соответствии с (9) и (16) выигрыш ССВ ЭКГ по отношении к УХА ЭКГ при хранении в сжатом виде ЭКГ в G отведениях при одном и том же числе используемых СВ определится отношением

На фиг. 9 и фиг. 10 приведены зависимости коэффициента эффективности (17) от числа PQRST-циклов, сжимаемых с использованием предлагаемого решения и прототипа. Кривые получены для равного числа используемых СВ и при равной частоте дискретизации.

Как видно из графиков фиг. 9 и фиг. 10, при двенадцати отведениях и при относительно коротких записях (сотни PQRST-циклов) коэффициент сжатия ССВ ЭКГ превышает коэффициент сжатия прототипа в 4-5 раз для случая низкой частоты дискретизации ЭКГ (порядка 20 Гц). Как следует из фиг. 7 и фиг. 8, и при такой низкой частоте дискретизации СВ ОСАО сохраняют все качественные признаки исследуемой ЭКГ. Это позволяет считать, что такой режим работы ССВ ЭКГ может иметь практическое значение.

При использовании трех отведений (холтеровское мониторирование) уже для записи из трех-четырех тысяч PQRST-циклов (время записи порядка 1 часа) коэффициент сжатия ССВ ЭКГ практически втрое превышает коэффициент сжатия прототипа, что позволяет его эффективно использовать ССВ ЭКГ при холтеровском мониторировании.

Способ реализуют следующей последовательностью шагов:

- на первом шаге сжатия нумеруют отведения ЭКГ; далее определяют положения R-зубцов (в отведении с наиболее выраженными R-зубцами) и нумеруют R-зубцы по порядку их следования; после чего формируют в каждом из отведений сегменты ЭКГ такие, что они содержат заданное число отсчетов слева и заданное число отсчетов справа от соответствующего сегменту R-зубца; каждому сформированному сегменту присваивают два номера, первый из которых совпадает с номером отведения, а второй - с номером R-зубца;

- на втором шаге сжатия из каждого сегмента удаляют полиномиальный тренд, который строят с использованием заданного числа начальных и заданного числа конечных отсчетов сегмента;

- на третьем шаге сжатия формируют матрицы синхронных ансамблей отведений; число матриц синхронных ансамблей отведений берут равным числу используемых отведений; в каждую из формируемых матриц синхронных ансамблей отведений в качестве строк записывают сегменты, полученные на втором шаге сжатия, имеющие первый номер, совпадающий с номером отведения, а второй номер, совпадающий с номером строки формируемой матрицы синхронного ансамбля отведения;

- на четвертом шаге сжатия из матриц синхронных ансамблей отведений, полученных на третьем шаге сжатия, формируют матрицу объединенного синхронного ансамбля отведений, для чего к матрице синхронного ансамбля первого отведения последовательно справа присоединяют следующие по порядку номеров отведений матрицы синхронных ансамблей отведений;

- на пятом шаге сжатия вычисляют ковариационную матрицу объединенного синхронного ансамбля, для чего матрично перемножают транспонированную матрицу объединенного синхронного ансамбля отведений на матрицу объединенного синхронного ансамбля отведений;

- на шестом шаге сжатия вычисляют собственные векторы и собственные значения ковариационной матрицы объединенного синхронного ансамбля; собственные значения ковариационной матрицы объединенного синхронного ансамбля нумеруют в порядке их убывания; номера собственных векторов меняют в соответствии с номерами их собственных значений;

- на седьмом шаге сжатия вычисляют нормированный спектр собственных значений, для чего делят собственные значения, взятые в порядке возрастания их номеров, на сумму всех собственных значений; вычисляют функцию относительной ошибки восстановления ЭКГ, для чего в качестве аргумента функции используют номер собственного значения, а значение функции получают путем вычитания из единицы всех собственных значений, номер которых не превышает аргумента вычисляемой функции;

- на восьмом шаге сжатия задают допустимую относительную ошибку восстановления ЭКГ и определяют число собственных векторов, которое обеспечивает непревышение заданной допустимой относительной ошибки восстановления ЭКГ, для чего определяют число необходимых собственных векторов, равное минимальному значению аргумента функции относительной ошибки восстановления ЭКГ, при котором значение функции не превышает заданной допустимой относительной ошибки восстановления ЭКГ; далее формируют матрицу собственных векторов, в которую записывают построчно собственные векторы в порядке возрастания их номеров, вплоть до номера, равного числу необходимых собственных векторов;

- на девятом шаге сжатия вычисляют матрицу скалярных произведений, для чего матрично перемножают матрицу собственных векторов на транспонированную матрицу объединенного синхронного ансамбля отведений;

- на десятом шаге сжатия запоминают для хранения в сжатом виде: число отведений, число отсчетов сжимаемой ЭКГ, положения R-зубцов, число отсчетов в сегменте слева и справа от R-зубца, число отсчетов в сегменте, матрицу собственных векторов, матрицу скалярных произведений.

Воспроизводят сжатую ЭКГ следующей последовательностью шагов:

- на первом шаге воспроизведения вычисляют матрицу воспроизведения объединенного синхронного ансамбля отведений, для чего матрично перемножают транспонированную хранимую матрицу скалярных произведений на хранимую матрицу собственных векторов;

- на втором шаге воспроизведения формируют матрицу воспроизведения ЭКГ, имеющую число строк, совпадающее с числом отведений, и число столбцов, совпадающее с числом отсчетов исходной ЭКГ; матрица воспроизведения ЭКГ заполняется нулевыми значениями;

- на третьем шаге воспроизведения производят разделение строк матрицы воспроизведения объединенного синхронного ансамбля отведений на отдельные примыкающие друг к другу сегменты, число отсчетов в которых совпадает с хранимым числом отсчетов сегмента; каждому сегменту присваивают два номера, первый из которых совпадает с номером отведения, а второй совпадает с номером сегмента по порядку следования в строке матрицы;

- на четвертом шаге воспроизведения в каждой строке матрицы воспроизведения ЭКГ на основе хранимых значений положений R-зубцов и числа отсчетов слева и справа от R-зубцов производят разметку границ сегментов и размещают в этих границах сегменты матрицы воспроизведения объединенного синхронного ансамбля отведений так, что первый номер сегмента совпадает с номером строки матрицы воспроизведения ЭКГ, а второй номер сегмента совпадает с номером R-зубца по порядку.

Описание чертежей

Фиг. 1. Устройство хранения и анализа ЭКГ [1]:

1 - блок авторизации и доступа;

2 - блок задания режимов работы, контроля сжатия, хранения и выборки;

3 - кардиоайгеноскоп.

Фиг. 2. Конструкция кардиоайгено скопа [4]:

4 - блок формирования ансамбля кардиоосцилляций;

5 - блок вычислителя матрицы смешанных моментов;

6 - блок вычислителя собственных векторов и собственных значений;

7 - блок восстановления кардиосигнала и анализа признаков.

Фиг. 3. Нормированные спектры собственных значений - а) и относительные погрешности восстановления ЭКГ в зависимости от числа используемых СВ - б) для УХА ЭКГ (пунктирные линии) и предлагаемого способа (сплошные линии). Результаты получены для пациента №155 (группа «Здоров» из [7]) в случае использования:

- УХА ЭКГ для сжатия ЭКГ в первом отведении,

- предлагаемого способа для сжатия всех 12 отведений.

Частота дискретизации 100 Гц.

Фиг. 4. Нормированные спектры собственных хначений - а) и относительные погрешности восстановления ЭКГ в зависимости от числа используемых СВ - б) для УХА ЭКГ (пунктирные линии) и предлагаемого способа (сплошные линии). Результаты получены для пациента №157 (группа «Аритмический синдром» из [7]) в случае использования:

- УХА ЭКГ для сжатия ЭКГ в первом отведении,

- предлагаемого способа для сжатия всех 12 отведений.

Частота дискретизации 100 Гц.

Фиг. 5. Нормированные спектры собственных хначений - а) и относительные погрешности восстановления ЭКГ в зависимости от числа используемых СВ - б) для УХА ЭКГ (пунктирные линии) и предлагаемого способа (сплошные линии). Результаты получены для пациента №155 (группа «Здоров» из [7]) в случае использования:

- УХА ЭКГ для сжатия ЭКГ в первом отведении,

- предлагаемого способа для сжатия всех 12 отведений.

Частота дискретизации 20 Гц.

Фиг. 6. Нормированные спектры собственных хначений - а) и относительные погрешности восстановления ЭКГ в зависимости от числа используемых СВ - б) для УХА ЭКГ (пунктирные линии) и предлагаемого способа (сплошные линии). Результаты получены для пациента №157 (группа «Аритмический синдром» из [7]) в случае использования:

- УХА ЭКГ для сжатия ЭКГ в первом отведении,

- предлагаемого способа для сжатия всех 12 отведений.

Частота дискретизации 20 Гц.

Фиг. 7. Первые собственные векторы, полученные с использованием предлагаемого способа для ЭКГ (12 отведений) пациентов №155 (группа «Здоров» из [7] - а) и №157 (группа «Аритмический синдром» из [7]) - б). Кружочками показаны границы, соответствующие границам PQRST-циклов в отведениях I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6, соответственно.

Частота дискретизации 100 Гц.

Фиг. 8. Первые собственные векторы, полученные с использованием предлагаемого способа для ЭКГ (12 отведений) пациентов №155 (группа «Здоров» из [7]) -а) и №157 (группа «Аритмический синдром» из [7]) - б). Кружочками показаны границы, соответствующие границам PQRST-циклов в отведениях I, II, III, aVR, aVL, aVF, V1, V2, V3,V4, V5, V6, соответственно.

Частота дискретизации 20 Гц.

Фиг. 9. Зависимость коэффициента эффективности (17) от числа элементов в синхронном ансамбле при использовании четырех собственных векторов.

Фиг. 10. Зависимость коэффициента эффективности (17) от числа элементов в синхронном ансамбле при использовании восьми собственных векторов.

Осуществление способа

Способ реализуют в виде программного или программно-аппаратного комплекса.

Список литературы

1. Исакевич В.В., Исакевич Д.В. Устройство хранения и анализа ЭКГ. Полезная модель №162110 RU.

2. Струтынский А.В. Электрокардиограмма: анализ и интерпретация / А.В. Струтынский. - 15-е изд. - М.: МЕДпресс-информ, 2013. - 244 с.: илл.

3. Исакевич В.В., Исакевич Д.В., Грунская Л.В. Анализатор собственных векторов и компонент сигнала. Полезная модель №116242 RU.

4. Исакевич В.В., Исакевич Д.В., Батин А.С. Кардиоайгеноскоп. Полезная модель №128470 RU.

5. Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). М.: Наука, 831 с.

6. Исакевич Д.В., Исакевич В.В. Кардиоайгеноскоп - новая полезная модель обработки ЭКГ. - М. Издательство Перо, 2014. - 138 с. ISBN 978-5-00086-280-3.

7. The РТВ Diagnostic ECG Database - The PTB Diagnostic ECG Database - http://www.physionet.org/physiobankydatabase/ptbdb/

Способ сжатия и воспроизведения ЭКГ, отличающийся тем, что сжимают ЭКГ в нескольких отведениях следующей последовательностью шагов: на первом шаге сжатия нумеруют отведения ЭКГ; определяют положения R-зубцов и нумеруют R-зубцы по порядку их следования; формируют в каждом из отведений сегменты ЭКГ такие, что они содержат заданное число отсчетов слева и заданное число отсчетов справа от соответствующего сегменту R-зубца; каждому сформированному сегменту присваивают два номера, первый из которых совпадает с номером отведения, а второй совпадает с номером R-зубца; на втором шаге сжатия из каждого сегмента удаляют полиномиальный тренд, который строят с использованием заданного числа начальных и заданного числа конечных отсчетов сегмента; на третьем шаге сжатия формируют матрицы синхронных ансамблей отведений; число матриц синхронных ансамблей отведений берут равным числу используемых отведений; в каждую из формируемых матриц синхронных ансамблей отведений в качестве строк записывают сегменты, полученные на втором шаге сжатия, имеющие первый номер, совпадающий с номером отведения, а второй номер, совпадающий с номером строки формируемой матрицы синхронного ансамбля отведения; на четвертом шаге сжатия из матриц синхронных ансамблей отведений, полученных на третьем шаге сжатия, формируют матрицу объединенного синхронного ансамбля отведений, для чего к матрице синхронного ансамбля первого отведения последовательно справа присоединяют следующие по порядку номеров отведений матрицы синхронных ансамблей отведений; на пятом шаге сжатия вычисляют ковариационную матрицу объединенного синхронного ансамбля, для чего матрично перемножают транспонированную матрицу объединенного синхронного ансамбля отведений на матрицу объединенного синхронного ансамбля отведений; на шестом шаге сжатия вычисляют собственные векторы и собственные значения ковариационной матрицы объединенного синхронного ансамбля; собственные значения ковариационной матрицы объединенного синхронного ансамбля нумеруют в порядке их убывания; номера собственных векторов меняют в соответствии с номерами их собственных значений; на седьмом шаге сжатия вычисляют нормированный спектр собственных значений, для чего делят собственные значения, взятые в порядке возрастания их номеров, на сумму всех собственных значений; вычисляют функцию относительной ошибки восстановления ЭКГ, для чего в качестве аргумента функции используют номер собственного значения, а значение функции получают путем вычитания из единицы всех собственных значений, номер которых не превышает аргумента вычисляемой функции; на восьмом шаге сжатия задают допустимую относительную ошибку восстановления ЭКГ и определяют число собственных векторов, которое обеспечивает непревышение заданной допустимой относительной ошибки восстановления ЭКГ, для чего определяют число необходимых собственных векторов, равное минимальному значению аргумента функции относительной ошибки восстановления ЭКГ, при котором значение функции не превышает заданной допустимой относительной ошибки восстановления ЭКГ; далее формируют матрицу собственных векторов, в которую записывают построчно собственные векторы в порядке возрастания их номеров, вплоть до номера, равного числу необходимых собственных векторов; на девятом шаге сжатия вычисляют матрицу скалярных произведений, для чего матрично перемножают матрицу собственных векторов на транспонированную матрицу объединенного синхронного ансамбля отведений; на десятом шаге сжатия запоминают для хранения в сжатом виде: число отведений, число отсчетов сжимаемой ЭКГ, положения R-зубцов, число отсчетов в сегменте слева и справа от R-зубца, число отсчетов в сегменте, матрицу собственных векторов, матрицу скалярных произведений; воспроизводят сжатую ЭКГ следующей последовательностью шагов: на первом шаге воспроизведения вычисляют матрицу воспроизведения объединенного синхронного ансамбля отведений, для чего матрично перемножают транспонированную хранимую матрицу скалярных произведений на хранимую матрицу собственных векторов; на втором шаге воспроизведения формируют матрицу воспроизведения ЭКГ, имеющую число строк, совпадающее с числом отведений, и число столбцов, совпадающее с числом отсчетов исходной ЭКГ; матрица воспроизведения ЭКГ заполняется нулевыми значениями; на третьем шаге воспроизведения производят разделение строк матрицы воспроизведения объединенного синхронного ансамбля отведений на отдельные примыкающие друг к другу сегменты, число отсчетов в которых совпадает с хранимым числом отсчетов сегмента; каждому сегменту присваивают два номера, первый из которых совпадает с номером отведения, а второй совпадает с номером сегмента по порядку следования в строке матрицы; на четвертом шаге воспроизведения в каждой строке матрицы воспроизведения ЭКГ на основе хранимых значений положений R-зубцов и числа отсчетов слева и справа от R-зубцов производят разметку границ сегментов и размещают в этих границах сегменты матрицы воспроизведения объединенного синхронного ансамбля отведений так, что первый номер сегмента совпадает с номером строки матрицы воспроизведения ЭКГ, а второй номер сегмента совпадает с номером R-зубца по порядку.



 

Похожие патенты:

Группа изобретений относится к медицине, а именно к устройству и способу бесконтактного мониторинга частоты сердечных сокращений (ЧСС). Устройство содержит бесконтактную матрицу датчиков для размещения в положении, находящемся на расстоянии от пациента, но вблизи него, и цепь обработки сигналов, соединенную с матрицей датчиков.

Изобретение относится к медицинским принадлежностям, в частности к принадлежностям, необходимым для проведения неинвазивного исследования плода в ходе контроля течения беременности.

Группа изобретений относится к медицине, а именно к абдоминальному обнаружению материнских и/или фетальных электрофизиологических сигналов. Накладка с электродами содержит гибкую подложку, взаимосвязывающую электроды, и блок модуля для разъемного сопряжения с электронным считывающим устройством для обнаружения материнского и/или фетального электрофизиологического сигнала на электродах.

Изобретение относится к сельскому хозяйству, а именно к инкубации яиц сельскохозяйственных и диких птиц. Вначале неинвазивно получают данные о нормальном значении показателя частоты сердечных сокращений эмбриона посредством изъятия яйца данного вида или породы птиц из-под наседки и помещения в устройство контроля показателя частоты сердечных сокращений.

Группа изобретений относится к медицине, а именно к мониторингу ЭЭГ, и может быть использовано для для определения появления комплекса QRS в данных ЭКГ. Устройство и система выполнены для реализации способа, причем устройство содержит: приемный блок, сконфигурированный с возможностью приема первого, второго и третьего наборов данных ЭКГ, которые собираются соответственно комбинацией трех электродных отведений II, V4 и V5; блок обнаружения, сконфигурированный с возможностью отдельной оценки первого, второго и третьего наборов данных ЭКГ, чтобы обнаруживать, проявляется ли или нет комплекс QRS в предварительно заданном временном окне в соответствующем наборе данных ЭКГ; выходной блок, сконфигурированный с возможностью вывода сообщения о появлении комплекса QRS в предварительно заданном временном окне, если в ответ на то, что комплекс QRS был обнаружен в предварительно заданном временном окне на основании критерия большинства в по меньшей мере двух из первого, второго и третьего наборов данных ЭКГ; вычислительный блок, сконфигурированный с возможностью вычисления первого, второго и третьего значений качества сигнала, посредством (а) вычисления отношения (a) (i) стандартного отклонения N последовательных форм сигнала в соответствующем наборе данных ЭКГ к (а) (ii) эталонному стандартному отклонению соответствующего набора данных ЭКГ или (b) посредством вычисления (b) (i) отношения энергетического отношения сигнала (SNR) для N последовательных форм сигнала в соответствующем наборе данных ЭКГ к (b) (ii) эталонному значению SNR соответствующего набора данных ЭКГ, при этом эталонное стандартное отклонение и эталонное значение SNR соответствующего набора данных ЭКГ предварительно определяются из соответственно первого, второго и третьего наборов данных ЭКГ, которые собираются посредством, соответственно, электродных отведений II, V4 и V5 на стадии до физической нагрузки; и блок интерфейса, сконфигурированный с возможностью вывода предупреждающего сообщения о том, что одно из первого, второго и третьего значений качества сигнала больше, чем предварительно определенный порог.

Группа изобретений относится к медицине. Способ регистрации частоты сердечных сокращений эмбриона птиц без разрушения скорлупы осуществляют с помощью устройства, снабженного освещающими всю поверхность яйца светодиодными источниками света и электронной схемой автоматической регуляции интенсивности свечения светодиодов.

Группа изобретений относится к медицине. Способ работы в комбинированном режиме синхронизированной кардиоверсии посредством дефибриллятора с внешним электрокардиографическим монитором осуществляют с помощью дефибрилляционной системы.

Группа изобретений относится к медицине. Способ суточного мониторинга состояния плода и матери в антенатальном периоде беременности осуществляют с помощью устройства.

Изобретения относятся к медицине. Устройство для кардиореспираторного анализа содержит корпус с закрепленными на нем блоком управления и инфракрасным пульсоксиметрическим датчиком для измерения частоты пульса и оксигенации крови.

Изобретения относятся к медицине. Способ определения частоты сердечных сокращений человека реализуют с помощью переносного устройства, входящего в состав системы для определения частоты сердечных сокращений.
Наверх