Способ управления и устройство управления двигателем гибридного транспортного средства

Изобретение относится к гибридным транспортным средствам. В способе управления двигателем гибридного транспортного средства сохраняют момент времени, в который величина или коэффициент изменения целевой движущей силы для транспортного средства становится предварительно определенным порогом или более, затем вычисляют оценочную траекторию частоты вращения двигателя в соответствии с величиной или коэффициентом изменения целевой движущей силы. Когда запрос на изменение выработки мощности выдается в двигатель в другой момент времени, отличный от упомянутого момента времени, управляют частотой вращения двигателя на основе вычисленной оценочной траектории. Повышается уровень комфорта при вождении. 2 н. и 8 з.п. ф-лы, 12 ил.

 

Область техники, к которой относится изобретение

[0001]

Настоящее изобретение относится к способу управления и устройству управления для гибридного транспортного средства.

Уровень техники

[0002]

В гибридных транспортных средствах известно устройство управления, которое включает в себя средство задания целевой движущей силы двигателя и средство установки целевого значения (патентный документ 1). Средство задания целевой движущей силы двигателя вычисляет целевую движущую силу двигателя посредством деления требуемой лошадиной силы от аккумулятора на скорость транспортного средства, чтобы получить частное и вычесть частное из целевой движущей силы для транспортного средства. Средство установки целевого значения получает рабочую точку двигателя, в которой расход топлива является оптимальным, на основе целевой движущей силы двигателя и устанавливает целевой крутящий момент двигателя и целевую частоту вращения входного вала автоматической коробки передач, используя рабочую точку. Средство установки целевого значения вычисляет целевую частоту вращения входного вала на основе характеристической кривой или карты скорости транспортного средства и частоты вращения входного вала относительно предварительно установленной движущей силы.

Документ предшествующего уровня техники

Патентный документ

[0003]

Патентный документ 1: JP3997633B

Сущность изобретения

Проблемы, на решение которых направлено изобретение

[0004]

Когда частота вращения двигателя неисключительным образом определяется в отношении движущей силы приводного электродвигателя, как в вышеприведенном уровне техники, к сожалению, частота вращения двигателя может быстро увеличиваться при ускорении при нажатии педали акселератора, так как чувствительность частоты вращения приводного электродвигателя к положению педали акселератора выше, чем чувствительность двигателя. Соответственно, ощущение ускорения, воспринимаемое по звуку двигателя, отличается от намерения водителя ускоряться, и, таким образом, водитель может испытывать внезапное ощущение дискомфорта. Аналогичным образом, также при отпускании педали акселератора для замедления частота вращения двигателя может быстро уменьшаться; следовательно, ощущение замедления, воспринимаемое по звуку двигателя, отличается от намерения водителя замедляться, и, таким образом, водитель может быть испытывать внезапное ощущение дискомфорта. Такое ощущение дискомфорта особенно заметно в так называемом последовательном гибридном транспортном средстве, в котором двигатель используется для выработки мощности для приводного электродвигателя.

[0005]

Задача, которая должна быть решена посредством настоящего изобретения, состоит в том, чтобы обеспечить способ управления и устройство управления для гибридного транспортного средства, которые способны ослабить ощущение дискомфорта, которое возникает у водителя.

Средства для решения проблем

[0006]

Настоящее изобретение обеспечивает способ управления гибридным транспортным средством, содержащим электродвигатель, который приводит транспортное средство в движение, генератор, который подает питание на электродвигатель, и двигатель, который приводит в движение генератор, и решает вышеупомянутую проблему посредством сохранения момента времени, в который величина или коэффициент изменения целевой движущей силы для транспортного средства становится предварительно определенным порогом или более, вычисляя оценочную траекторию частоты вращения двигателя в соответствии с величиной или коэффициентом изменения целевой движущей силы, и когда запрос на изменение выработки мощности выдается в двигатель в другой момент времени, отличный от упомянутого момента времени, регулируя частоту вращения двигателя на основе вычисленной оценочной траектории.

Эффект изобретения

[0007]

Согласно настоящему изобретению, момент времени, в который величина или коэффициент изменения целевой движущей силы становится предварительно определенным порогом или более, сохраняется, оценочная траектория частоты вращения двигателя вычисляется в соответствии с величиной или коэффициентом изменения целевой движущей силы, и когда запрос на изменение выработки мощности выдается в двигатель в другой момент времени, нежели упомянутый момент времени, частота вращения двигателя управляется на основе вычисленной оценочной траектории; следовательно, даже когда момент запуска двигателя изменяется из-за доступной выходной мощности аккумулятора или тому подобного, частота вращения двигателя управляется вдоль идеального профиля (оценочной траектории) частоты вращения двигателя в соответствии с моментом времени, в который целевая движущая сила изменяется. В результате, даже когда абсолютное значение величины изменения или коэффициента изменения целевой движущей силы является большим, быстрое увеличение или уменьшение частоты вращения двигателя может быть подавлено, и ощущение дискомфорта, воспринимаемое водителем, такое как внезапное ощущение дискомфорта, может быть смягчено.

Краткое описание чертежей

[0008]

Фиг. 1 является блок-схемой, иллюстрирующей вариант осуществления гибридного транспортного средства, к которому применяется способ управления гибридным транспортным средством согласно настоящему изобретению.

Фиг. 2 - блок-схема управления, иллюстрирующая основную конфигурацию системы управления для гибридного транспортного средства по фиг. 1.

Фиг. 3 - блок-схема управления, иллюстрирующая основную конфигурацию блока вычисления целевой движущей силы по фиг. 2.

Фиг. 4 - блок-схема управления, иллюстрирующая основную конфигурацию блока вычисления целевой частоты вращения двигателя по фиг. 2.

Фиг. 5 - блок-схема управления, иллюстрирующая основную конфигурацию блока вычисления конечной целевой частоты вращения двигателя по фиг. 2.

Фиг. 6 - блок-схема управления, иллюстрирующая основную конфигурацию блока вычисления определения функционирования с участием водителя по фиг. 5.

Фиг. 7 - блок-схема управления, иллюстрирующая основную конфигурацию блока вычисления по фиг. 5 для целевой скорости достижения целевой частоты вращения двигателя.

Фиг. 8 - блок-схема управления, иллюстрирующая основную конфигурацию блока вычисления по фиг. 5 для скорости изменения целевой частоты вращения двигателя во время функционирования с участием водителя.

Фиг. 9 - блок-схема управления, иллюстрирующая основную конфигурацию блока вычисления основной целевой частоты вращения двигателя по фиг. 5.

Фиг. 10 является блок-схемой последовательности операций, иллюстрирующей основное содержание обработки, выполняемое посредством контроллера транспортного средства по фиг. 1 и 2.

Фиг. 11 представляет собой набор временных диаграмм, иллюстрирующих характер изменения соответствующих параметров в типичной ситуации (во время ускорения) для гибридного транспортного средства, показанного на фиг. 1.

Фиг. 12 представляет собой набор временных диаграмм, иллюстрирующих характер изменения соответствующих параметров в другой ситуации для гибридного транспортного средства, показанного на фиг. 1.

Вариант(ы) осуществления настоящего изобретения

[0009]

«Механическая конфигурация гибридного транспортного средства»

Фиг. 1 является блок-схемой, иллюстрирующей вариант осуществления гибридного транспортного средства, к которому применяется способ управления гибридным транспортным средством согласно настоящему изобретению. Гибридное транспортное средство 1 по настоящему варианту осуществления включает в себя двигатель 11, генератор 12, электродвигатель 13, аккумулятор 14, ведущие колеса 15 и 15, ведущие оси 16 и 16 и дифференциал 17. Гибридное транспортное средство 1 по настоящему варианту осуществления представляет собой транспортное средство, в котором ведущие колеса 15 и 15 приводятся в движение только посредством движущей силы электродвигателя 13, а не движущей силы двигателя 11. Этот тип гибридного транспортного средства 1 называется последовательным гибридным транспортным средством, в отличие от параллельного гибридного транспортного средства и гибридного транспортного средства с разделением мощности, поскольку двигатель 11, электродвигатель 13 и ведущие колеса 15 и 15 соединены последовательно (последовательное соединение).

[0010]

Двигателем 11 настоящего варианта осуществления управляют для запуска и остановки с использованием значения команды крутящего момента двигателя, которое вводится от контроллера 21 двигателя, что будет описано позже. Запуск двигателя в начальный момент времени осуществляется посредством движущей силы от генератора 12, который выполнен в виде мотора-генератора. Затем управление впрыском топлива, управление количеством всасываемого воздуха, управление зажиганием и другое управление параметрами привода двигателя 11 выполняются в соответствии с значением команды крутящего момента двигателя, и двигатель 11 приводится в движение со частотой вращения, определенной в соответствии с значением команды крутящего момента двигателя. Двигатель 11 имеет выходной вал 111, который механически соединен с вращающимся валом 121 генератора 12 через ускоряющую шестерню 112. Таким образом, когда двигатель 11 приводится в движение, вращающийся вал 121 генератора 12 вращается в соответствии с коэффициентом увеличения скорости мультипликатора 112 (который может быть коэффициентом увеличения постоянной скорости или коэффициентом увеличения переменной скорости). В результате генератор 12 вырабатывает электрическую мощность с величиной выработки мощности, соответствующей частоте вращения вращающегося вала 121.

[0011]

Двигатель 11 также служит нагрузкой при сбросе избыточной мощности, вырабатываемой посредством электродвигателя 13, что будет описано позже. Например, когда состояние заряда (SOC - state of charge) аккумулятора 14 является состоянием полного заряда или состоянием, близким к состоянию полного заряда, и желательно добиться торможения двигателя посредством электродвигателя 13, электрическая мощность, вырабатываемая посредством электродвигателя 13, подается в генератор 12, который служит мотором-генератором. Таким образом, избыточная мощность может быть разряжена так, что генератор 12 приводит в действие двигатель 11 без нагрузки, в которой впрыск топлива и зажигание прекращаются.

[0012]

Генератор 12 настоящего варианта осуществления служит не только в качестве генератора, но также в качестве электродвигателя (электрического двигателя) через управление переключением, выполняемое посредством первого инвертора 141. Генератор 12 служит в качестве электродвигателя при выполнении описанной выше функционирования с участиемоперации запуска двигателя во время запуска двигателя 11 или процесса разрядки избыточной мощности от электродвигателя 13. Достаточно, однако, что генератор 12 служит по меньшей мере в качестве генератора, чтобы реализовать способ управления и устройство управления для гибридного транспортного средства в соответствии с настоящим изобретением.

[0013]

Генератор 12 настоящего варианта осуществления электрически соединен с аккумулятором 14 через первый инвертор 141, так что электрическая мощность может передаваться и приниматься. Кроме того, генератор 12 по настоящему варианту осуществления электрически соединен с электродвигателем 13 через первый инвертор 141 и второй инвертор 142, так что электрическая мощность может передаваться и приниматься. Первый инвертор 141 преобразует мощность переменного тока, вырабатываемую посредством генератора 12, в мощность постоянного тока и подает мощность постоянного тока в аккумулятор 14 и/или второй инвертор 142. Первый инвертор 141 также преобразует мощность постоянного тока, подаваемую от аккумулятора 14 и/или второго инвертора 142, в мощность переменного тока и подает мощность переменного тока в генератор 12. Первым инвертором 141 и генератором 12 управляют посредством значения команды частоты вращения от контроллера 22 генератора, что будет описано позже.

[0014]

Аккумулятор 14 настоящего варианта осуществления, который состоит из вторичного аккумулятора, такого как литий-ионный аккумулятор, принимает и накапливает электрическую мощность, вырабатываемую посредством генератора 12, через первый инвертор 141, а также принимает и накапливает электрическую мощность, регенерируемую посредством электродвигателя 13, через второй инвертор 142. Хотя иллюстрация опущена, аккумулятор 14 также может быть выполнен с возможностью зарядки от внешнего промышленного электроснабжения. Аккумулятор 14 по настоящему варианту осуществления подает накопленную электрическую мощность в электродвигатель 13 через второй инвертор 142 для приведения в действие электродвигателя 13. Аккумулятор 14 по настоящему варианту осуществления также подает накопленную электрическую мощность в генератор 12, который служит в качестве электродвигателя, через первый инвертор 141 для приведения в действие генератора 12 и выполняет запуск двигателя 11, работу двигателя без нагрузки и т.д. Аккумулятором 14 управляют посредством контроллера 23 аккумулятора, который выполняет управление зарядкой/разрядкой в соответствии с состоянием заряда SOC. Что касается источника электропитания для электродвигателя 13 по настоящему варианту осуществления, аккумулятор 14 может использоваться в качестве основного источника питания, в то время как генератор 12 может использоваться в качестве вспомогательного источника питания, или генератор 12 может использоваться в качестве основного источника питания, в то время как аккумулятор 14 может использоваться в качестве вспомогательного источника питания. Для реализации способа управления и устройства управления для гибридного транспортного средства согласно настоящему изобретению аккумулятор 14, как показано на фиг. 1, необязателен, и аккумулятор 14 может быть опущен при необходимости, при условии, что обеспечен аккумулятор для запуска двигателя 11, и номинальная вырабатываемая мощность генератора 12 достаточно велика для движения гибридного транспортного средства 1.

[0015]

Электродвигатель 13 по настоящему варианту осуществления имеет вращающийся вал 131, который соединен с входным валом 171 зубчатого колеса дифференциала 17 посредством редуктора 132. Крутящий момент вращающегося вала 131 электродвигателя 13 передается на редуктор 132 и дифференциал 17. Дифференциал 17 делит крутящий момент на правую и левую составляющие, которые соответственно передаются на правое и левое ведущие колеса 15 и 15 через правую и левую ведущие оси 16 и 16. Это позволяет ведущим колесам 15 и 15 вращаться в соответствии с крутящим моментом привода электродвигателя 13, и гибридное транспортное средство 1 движется вперед или назад. Коэффициент уменьшения скорости редуктора 132 может быть фиксированным коэффициентом уменьшения или также может быть переменным коэффициентом уменьшения. Например, трансмиссия может быть предусмотрена в качестве замены для редуктора 132.

[0016]

Предусмотрен датчик 27 переключателя рычага переключения передач/датчик переключателя режима движения (который в дальнейшем также будет называться датчиком 27 S/M). Датчик 27 S/M включает в себя датчик переключателя рычага переключения передач, который обнаруживает переключатель рычага переключения передач. Переключатель рычага переключения передач представляет собой переключатель рычажного типа, который может выбирать любое из нейтрального положения, положения парковки, положения движения, заднего хода и положения тормоза. Переключатель рычага переключения обычно устанавливается на центральной консоли или т.п. рядом с сиденьем водителя. Когда положение привода выбрано, электродвигатель 13 вращается в направлении, соответствующем направлению движения вперед транспортного средства, а, когда выбрано обратное положение, электродвигатель 13 вращается обратно в направлении, соответствующем направлению движения назад транспортного средства. Положение тормоза относится к положению, в котором целевая рекуперативная движущая сила электродвигателя 13 относительно скорости движения задана большей, и когда педаль акселератора отпущена, электродвигатель 13 достигает тормоза двигателя, который является достаточно большим, чтобы остановить гибридное транспортное средство 1 без использования тормоза. Датчик 27 S/M дополнительно включает в себя датчик переключателя режима движения, который обнаруживает переключатель режима движения. Переключатель режима движения относится, например, к кнопочному или дисковому переключателю для переключения между множеством режимов движения, таких как режим нормального движения, режим эко-движения и режим спортивного движения, в которых профили целевой движущей силы относительно скорости транспортного средства и положения педали акселератора различны (режимы движения будут описаны позже со ссылкой на фиг. 3). Переключатель режима движения обычно устанавливается на центральной консоли или тому подобном рядом с сиденьем водителя. Режим движения может быть установлен, когда переключатель рычага переключения передач установлен в положение движения или в положение тормоза.

[0017]

Электродвигатель 13 настоящего варианта осуществления служит не только в качестве двигателя, но также и в качестве генератора (электрического генератора) через управление переключением, выполняемое посредством второго инвертора 142. Электродвигатель 13 служит в качестве генератора при зарядке вышеописанного аккумулятора 14 в случае низкого уровня заряда SOC или когда требуется добиться торможения двигателя во время замедления. Достаточно, однако, что электродвигатель 13 служит по меньшей мере в качестве электродвигателя, чтобы реализовать способ управления и устройство управления для гибридного транспортного средства в соответствии с настоящим изобретением.

[0018]

Электродвигатель 13 настоящего варианта осуществления электрически соединен с аккумулятором 14 через второй инвертор 142, так что электрическая мощность может передаваться и приниматься. Кроме того, электродвигатель 13 настоящего варианта осуществления электрически соединен с генератором 12 через первый инвертор 141 и второй инвертор 142, так что электрическая мощность может передаваться и приниматься. Второй инвертор 142 преобразует мощность постоянного тока, подаваемую от аккумулятора 14 и/или первого инвертора 141, в мощность переменного тока и подает мощность переменного тока в электродвигатель 13. Второй инвертор 142 также преобразует мощность переменного тока, вырабатываемую посредством электродвигателя 13, в мощность постоянного тока и подает мощность постоянного тока в аккумулятор 14 и/или первый инвертор 141. Вторым инвертором 142 и электродвигателем 13 управляют посредством коандного значения крутящего момента привода от контроллера 24 электродвигателя, что будет описано позже.

[0019]

Как описано выше, в гибридном транспортном средстве 1 настоящего варианта осуществления, когда водитель нажимает педаль акселератора после включения выключателя питания и отпускания бокового тормоза, требуемый крутящий момент привода, соответствующий величине нажатия педали акселератора, вычисляется посредством контроллера 20 транспортного средства. Значение команды крутящего момента привода выводится во второй инвертор 142 и электродвигатель 13 через контроллер 24 электродвигателя, и электродвигатель 13 приводится в действие для выработки крутящего момента, соответствующего значению команды крутящего момента привода. Это позволяет вращаться ведущим колесам 15 и 15, и гибридное транспортное средство 1 движется. В этой функционирования с участиемоперации выполняется определение относительно того, следует ли приводить в движение двигатель 11, на основе входных значений от датчика 25 акселератора, датчика 26 скорости транспортного средства и датчика 27 S/M и состояния заряда. Состояние аккумулятора 14 управляется посредством контроллера 23 аккумулятора, и когда необходимые условия удовлетворены, гибридное транспортное средство 1 движется во время привода двигателя 11. Конфигурация системы управления будет описана ниже, включая управление приводом для двигателя 11.

[0020]

«Конфигурация системы управления гибридным транспортным средством»

Фиг. 2 является блок-схемой управления, иллюстрирующей основную конфигурацию системы управления для гибридного транспортного средства 1 настоящего варианта осуществления, проиллюстрированного на фиг. 1. Как показано на фиг. 2, система управления по настоящему варианту осуществления включает в себя контроллер 23 аккумулятора, датчик 25 акселератора, датчик 26 скорости транспортного средства и датчик 27 S/M в качестве входных элементов, а также контроллер 21 двигателя, контроллер 22 генератора и контроллер 24 электродвигателя в качестве выходных целевых элементов. Соответствующие сигналы от входных элементов обрабатываются посредством контроллера 20 транспортного средства и выводятся в качестве сигналов управления на выходные целевые элементы.

[0021]

Контроллер 23 аккумулятора в качестве входного элемента вычисляет текущую доступную выходную мощность аккумулятора(Вт) из текущего состояния заряда SOC (например, от 0% до 100%) и номинальной выходной мощности аккумулятора 14, подлежащей мониторингу, и выводит вычисленную текущую доступную выходную мощность аккумулятора (Вт) для блока 202 вычисления целевой вырабатываемой мощности. Датчик 25 акселератора в качестве входного элемента обнаруживает величину нажатия педали акселератора, которую водитель нажимает и отпускает, и выводит обнаруженную величину нажатия в качестве положения педали акселератора (например, от 0% до 100%) в блок 201 вычисления целевой движущей силы. Датчик 26 скорости транспортного средства в качестве входного элемента вычисляет скорость транспортного средства, например, на основе частоты вращения вращающегося вала 131 электродвигателя 13, коэффициента уменьшения скорости редуктора 132 и радиуса ведущего колеса 15 и выводит вычисленную скорость транспортного средства в блок 201 вычисления целевой движущей силы, блок 202 вычисления целевой вырабатываемой мощности, блок 203 вычисления целевой частоты вращения двигателя и блок 204 вычисления конечной целевой частоты вращения двигателя. Датчик 27 S/M в качестве входного элемента выводит сигнал переключения передач и сигнал режима в блок 201 вычисления целевой движущей силы, блок 203 вычисления целевой частоты вращения двигателя и блок 204 вычисления конечной целевой частоты вращения двигателя. Сигнал переключения передач выбирается посредством описанного выше переключателя рычага переключения передач (любое из нейтрального положения, положения парковки, положения движения, заднего хода и положения тормоза). Сигнал режима выбирается посредством описанного выше переключателя режима движения (любой из нормального режима движения, режима эко-движения и режима спортивного движения).

[0022]

Обеспечен блок 205 вычисления целевого крутящего момента двигателя, который вычисляет значение команды крутящего момента двигателя. Значение команды крутящего момента двигателя вводится в контроллер 21 двигателя в качестве выходного целевого элемента. На основе значения команды крутящего момента двигателя контроллер 21 двигателя управляет параметрами привода двигателя 11, такими как количество всасываемого воздуха, объем впрыска топлива и зажигание двигателя 11, чтобы управлять движением двигателя 11. Блок 204 вычисления конечной целевой частоты вращения двигателя вычисляет значение команды частоты вращения генератора, которое вводится в контроллер 22 генератора в качестве выходного целевого элемента. На основе значения команды частоты вращения генератора контроллер 22 генератора управляет электрической мощностью, подаваемой в генератор 12. Значение команды частоты вращения генератора является значением команды функционирования для генератора 12, соединенного с двигателем 11. Блок 201 вычисления целевой движущей силы вычисляет значение команды крутящего момента приводного электродвигателя, которое вводится в контроллер 24 электродвигателя в качестве выходного целевого элемента. Контроллер 24 электродвигателя управляет электрической мощностью, подаваемой в электродвигатель 13. Значение команды крутящего момента приводного двигателя является основным значением команды для управления гибридным транспортным средством 1 для движения в соответствии с управлением водителя акселератором.

[0023]

Далее будет описана конфигурация контроллера 20 транспортного средства. Контроллер 20 транспортного средства обрабатывает соответствующие сигналы от вышеописанных входных элементов и выводит управляющие сигналы на выходные целевые элементы. Контроллер 20 транспортного средства по настоящему варианту осуществления включает в себя блок 201 вычисления целевой движущей силы, блок 202 вычисления целевой вырабатываемой мощности, блок 203 вычисления целевой частоты вращения двигателя, блок 204 вычисления конечной целевой частоты вращения двигателя и блок 205 вычисления целевого крутящего момента двигателя.

[0024]

Контроллер 20 транспортного средства выполнен в виде компьютера, на котором установлено аппаратное и программное обеспечение. Более конкретно, контроллер 20 транспортного средства выполнен с возможностью включать в себя постоянное запоминающее устройство (ROM - read only memory), в котором хранятся программы, центральный процессор (CPU - central processing unit), который выполняет программы, хранящиеся в ROM, и оперативное запоминающее устройство (RAM - random access memory), которое служит в качестве доступного устройства хранения. Микропроцессорный блок (MPU - micro processing unit), процессор цифровых сигналов (DSP - digital signal processor), специализированная интегральная схема (ASIC - application specific integrated circuit), программируемая пользователем вентильная матрица (FPGA - field programmable gate array) и т.п. могут использоваться в качестве рабочей схемы в качестве замены или дополнения к процессору. Вышеописанные блок 201 вычисления целевой движущей силы, блок 202 вычисления целевой вырабатываемой мощности, блок 203 вычисления целевой частоты вращения двигателя, блок 204 вычисления конечной целевой частоты вращения двигателя и блок 205 вычисления целевого крутящего момента двигателя выполняют соответствующие функции, которые будут описаны позже, посредством программного обеспечения, установленного в ROM. Аналогично, контроллер 21 двигателя, контроллер 22 генератора и контроллер 24 электродвигателя в качестве выходных целевых элементов и контроллер 23 аккумулятора в качестве входного элемента каждый выполнены как компьютер, на котором установлено аппаратное и программное обеспечение, то есть выполнены включающими в себя ROM, в котором хранятся программы, процессор (или MPU, DSP, ASIC или FPGA), который выполняет программы, хранящиеся в ROM, и RAM, которое служит доступным устройством хранения.

[0025]

Фиг. 3 является блок-схемой управления, иллюстрирующей основную конфигурацию блока 201 вычисления целевой движущей силы по фиг. 2. Соответствующие сигналы положения педали акселератора от датчика 25 акселератора, скорости транспортного средства от датчика 26 скорости транспортного средства, а также о положении переключения и режиме движения от датчика 27 S/M вводятся в блок 201 вычисления целевой движущей силы, который выводит целевую движущую силу Fd и значение команды крутящего момента приводного двигателя. Контроллер 20 транспортного средства включает в себя память, в которой хранятся соответствующие карты управления в трех режимах движения, то есть в режиме спортивного движения, в режиме нормального движения и в режиме эко-движения, для каждого из положений переключения (положения движения и положения тормоза). Фиг. 3 иллюстрирует, сверху вниз, примеры карт управления в трех режимах движения из режима спортивного движения, режима нормального движения и режима эко-движения, когда выбрано положение привода. Аналогичным образом, также хранятся карты управления в трех режимах движения из режима спортивного движения, режима нормального движения и режима эко-движения, когда выбрано положение тормоза. Три режима движения, соответствующие каждому положению переключения, различаются по величине целевой движущей силы (вертикальная ось) по отношению к скорости транспортного средства (горизонтальная ось) и положению педали акселератора (несколько линий). В режиме спортивного движения целевая движущая сила относительно скорости транспортного средства и положения педали акселератора задается относительно большой, в то время как в режиме эко-движения целевая движущая сила относительно скорости транспортного средства и положения педали акселератора установлена относительно небольшой или установлена средней в нормальном режиме движения. Режимы движения для каждого положения переключения соответствуют описаниям движения настоящего изобретения.

[0026]

Соответствующие сигналы положения переключения и режима движения от датчика 27 S/M вводятся в блок 201 вычисления целевой движущей силы, который извлекает карту управления в режиме движения, соответствующем положению переключения, и извлекает соответствующую целевую движущую силу в соответствии с положением педали акселератора от датчика 25 акселератора и скоростью транспортного средства от датчика 26 скорости транспортного средства. Она используется в качестве целевой движущей силы водителя, которая преобразуется в блоке в целевой крутящий момент приводного двигателя с использованием динамического радиуса ведущих колес 15 и передаточного числа редуктора 132. Здесь, если полученный целевой крутящий момент приводного двигателя превышает верхнее предельное значение крутящего момента, которое предварительно установлено, верхнее предельное значение крутящего момента задается в качестве целевого крутящего момента приводного двигателя, тогда как если полученный целевой крутящий момент двигателя меньше нижнего предельного значения крутящего момента, которое предварительно установлено, нижнее предельное значение крутящего момента устанавливается в качестве целевого значения крутящего момента приводного двигателя. Затем целевой крутящий момент приводного двигателя, полученный таким образом, выводят в качестве значения команды крутящего момента приводного двигателя в электродвигатель 13. Кроме того, целевой крутящий момент приводного двигателя, полученный таким образом, преобразуется в блоке в целевую движущую силу Fd с использованием динамического радиуса ведущих колес 15 и передаточного числа редуктора 132, и целевую движущую силу Fd выводят в блок 202 вычисления целевой вырабатываемой мощности, блок 203 вычисления целевой частоты вращения двигателя и блок 204 вычисления конечной целевой частоты вращения двигателя.

[0027]

Блок 202 вычисления целевой вырабатываемой мощности по фиг. 2 умножает целевую движущую силу Fd из блока 201 вычисления целевой движущей силы на скорость транспортного средства от датчика 26 скорости транспортного средства, чтобы получить требуемую мощность привода, и вычитает имеющуюся выходную мощность аккумулятора, которая получена из контроллера 23 аккумулятора, из требуемой мощности привода для получения основной целевой вырабатываемой мощности. Вырабатываемая мощность, которая должна добавляться по мере необходимости (например, требуемая зарядная мощность, полученная из состояния SOC заряда аккумулятора 14), добавляется к основной целевой вырабатываемой мощности для получения целевой вырабатываемой мощности Pe. Когда полученная целевая вырабатываемая мощность Pe больше нуля, требуется электрическая мощность, превышающая доступную выходную мощность аккумулятора 14; следовательно, блок 202 вычисления целевой вырабатываемой мощности выводит запрос выработки мощности двигателя с тем, чтобы двигатель 11 приводился в действие для выработки мощности посредством генератора 12. Напротив, когда полученная целевая вырабатываемая мощность Pe не больше нуля, электродвигатель 13 может приводиться в действие посредством мощности, которая не превышает доступную выходную мощность аккумулятора 14; следовательно, блок 202 вычисления целевой вырабатываемой мощности не выводит запрос выработки мощности двигателя. Целевая вырабатываемая мощность Pe, вычисленная посредством блока 202 вычисления целевой вырабатываемой мощности, выводится, как показано на фиг. 2, в блок 203 вычисления целевой частоты вращения двигателя и в блок 205 вычисления целевого крутящего момента двигателя. Кроме того, запрос выработки мощности двигателя, определенный посредством блока 202 вычисления целевой вырабатываемой мощности, выводится, например, в качестве сигнала признака в блок 204 вычисления конечной целевой частоты вращения двигателя.

[0028]

Фиг. 4 - блок-схема управления, иллюстрирующая основную конфигурацию блока 203 вычисления целевой частоты вращения двигателя по фиг. 2. Контроллер 20 транспортного средства включает в себя память, в которой хранится карта управления, как показано на фиг. 4, для частоты вращения двигателя, при которой достигается наилучшая топливная эффективность в отношении целевой вырабатываемой мощности Pe и карты управления, как показано на фиг. 4, для верхнего предела частоты вращения двигателя в требовании управляемости относительно скорости транспортного средства и целевой движущей силы Fd. Целевая вырабатываемая мощность Pe, вычисленная посредством блока 202 вычисления целевой вырабатываемой мощности, вводится в блок 203 вычисления целевой частоты вращения двигателя, который извлекает частоту вращения двигателя, при которой достигается наилучшая топливная эффективность, со ссылкой на карту управления, проиллюстрированную на фиг. 4, для частоты вращения двигателя, при которой достигается наилучшая топливная эффективность по отношению к целевой вырабатываемой мощности Pe. Кроме того, соответствующие сигналы положения переключения и режима движения от датчика 27 S/M вводятся в блок 203 вычисления целевой частоты вращения двигателя, который извлекает карту управления для верхнего предела частоты вращения двигателя в требовании управляемости относительно соответствующей скорости транспортного средства и целевой движущей силы Fd и извлекает верхний предел частоты вращения двигателя в соответствующем требовании управляемости в соответствии с положением педали акселератора от датчика 25 акселератора и скоростью транспортного средства от датчика 26 скорости транспортного средства.

[0029]

Затем частота вращения двигателя, при которой достигается наилучшая топливная эффективность, сравнивается с верхним пределом частоты вращения двигателя в требовании управляемости, и меньшая частота вращения двигателя извлекается. Когда эта частота вращения меньше нижнего предела частоты вращения двигателя, нижний предел частоты вращения двигателя устанавливается в качестве целевой частоты Nt вращения двигателя, тогда как когда эта частота вращения превышает верхний предел частоты вращения двигателя для защиты двигателя 11, верхний предел частоты вращения двигателя устанавливается как целевая частота Nt вращения двигателя. Когда эта частота вращения находится между нижним пределом и верхним пределом частоты вращения двигателя, эта частота вращения двигателя устанавливается без каких-либо изменений в качестве целевой частоты Nt вращения двигателя. Целевая частота Nt вращения двигателя выводится в блок 204 вычисления конечной целевой частоты вращения двигателя, как показано на фиг. 2. Вычисление целевой частоты Nt вращения двигателя в блоке 203 вычисления целевой частоты вращения двигателя выполняется независимо от того, выводится ли запрос выработки мощности двигателя из блока 202 вычисления целевой вырабатываемой мощности, и блок 204 вычисления конечной целевой частоты вращения двигателя может быть выполнен с возможностью считывания целевой частоты Nt вращения двигателя.

[0030]

Фиг. 5 - блок-схема управления, иллюстрирующая основную конфигурацию блока 204 вычисления конечной целевой частоты вращения двигателя по фиг. 2. Блок 204 вычисления конечной целевой частоты вращения двигателя включает в себя блок 2041 вычисления определения функционирования с участием водителя, блок 2042 вычисления для целевой скорости достижения целевой частоты вращения двигателя, блок 2043 вычисления для скорости изменения целевой частоты вращения двигателя во время функционирования с участием водителя, блок 2044 вычисления основной частоты вращения двигателя и блок 2045 вывода конечной целевой частоты вращения двигателя. Как показано на фиг. 2, соответствующие сигналы положения переключения и режима движения от датчика 27 S/M, скорости транспортного средства от датчика 26 скорости транспортного средства, целевой частоты Nt вращения двигателя от блока 203 вычисления целевой частоты вращения двигателя, целевой движущей силы Fd от блока 201 вычисления целевой движущей силы и запроса выработки мощности двигателя от блока 202 вычисления целевой вырабатываемой мощности вводятся в блок 204 вычисления конечной целевой частоты вращения двигателя, который выполняет процессы, которые будут описаны ниже, затем выводит значение команды частоты вращения генератора для контроллера 22 генератора и выводит конечную целевую частоту вращения двигателя в блок 205 вычисления целевого крутящего момента двигателя. Процессы, выполняемые посредством блока 2041 вычисления определения функционирования с участием водителя, блока 2042 вычисления для целевой скорости достижения целевой частоты вращения двигателя, блока 2043 вычисления для скорости изменения целевой частоты вращения двигателя во время функционирования с участием водителя, блока 2044 вычисления основной целевой частоты вращения двигателя и блока 2045 вывода конечной целевой частоты вращения двигателя, которые составляют блок 204 вычисления конечной целевой частоты вращения двигателя, будут описаны ниже в этом порядке.

[0031]

Как показано на фиг. 5, целевую движущую силу Fd, вычисленную посредством блока 201 вычисления целевой движущей силы, и целевую движущую силу Fd0 до предварительно определенного количества вычислений, которое предварительно хранится, вводят в блок 2041 вычисления определения функционирования с участием водителя, который вычисляет величину или коэффициент изменения целевой движущей силы. Здесь целевая движущая сила Fd0 до предварительно определенного количества вычислений является целевой движущей силой, вычисленной в процедуре за один цикл до или за предварительно определенное количество циклов до. Здесь может вычисляться величина изменения, полученная посредством вычитания движущей силы Fd0 до предварительно определенного количества вычислений из текущей целевой движущей силы Fd, или также может быть коэффициент изменения, полученный посредством деления текущей целевой движущей силы Fd на целевую движущую силу Fd0 до предварительно определенного количества вычислений. В последующем описании вариант осуществления будет описан в предположении, что величина изменения (ΔFd=Fd-Fd0) вычисляется посредством вычитания движущей силы Fd0 до предварительно определенного количества вычислений из текущей целевой движущей силы Fd. Примеры величины изменения включают в себя положительную величину изменения и отрицательную величину изменения. Положительная величина изменения означает, что целевая движущая сила увеличивается, в то время как отрицательная величина изменения означает, что целевая движущая сила уменьшается. То есть, когда водитель приводит в действие акселератор, увеличение величины нажатия педали акселератора (запрос ускорения) приводит к положительному изменению, а уменьшение величины нажатия педали акселератора (запрос замедления) приводит к отрицательному изменению.

[0032]

Фиг. 6 является блок-схемой управления, иллюстрирующей основную конфигурацию блока 2041 вычисления определения функционирования с участием водителя. Когда величина изменения ΔFd, полученная посредством блока 2041 вычисления определения функционирования с участием водителя, является положительной величиной изменения, то есть величиной увеличения (запрос ускорения), как проиллюстрировано на верхней левой диаграмме фиг. 6, определяют, что водитель запрашивает увеличение движущей силы в течение периода, в котором величина изменения ΔFd не меньше, чем предварительно определенный первый порог J1 (порог определения функционирования с участием водителя), в то время как определяют, что водитель не запрашивает увеличение движущей силы в течение периода, в котором величина изменения ΔFd не превышает предварительно определенный второй порог J2 (порог определения функционирования без участия водителя). Причина, по которой первый порог J1 установлен на значение, большее, чем второй порог J2, состоит в том, чтобы предотвратить поиск результата определения. Затем, как показано на верхней правой диаграмме фиг. 6, используют таймер для измерения времени от момента времени, в который величина увеличения целевой движущей силы становится первым порогом J1 или более, и сигнал признака запроса водителя об увеличении движущей силы сбрасывается в момент времени, в который предварительно определенное время T0 (проиллюстрированное как порог T0 на фиг.6) истекло. Предварительно определенное время T0 конкретно не ограничено, но составляет, например, несколько секунд. До тех пор, пока не истечет предварительно определенное время T0, частотой вращения двигателя 11 управляют на основе скорости изменения частоты вращения двигателя 11, подвергнутой процессу запаздывания первого порядка или тому подобному, который будет описан позже, и по истечении предварительно определенного времени T0 частоту вращения двигателя 11 регулируют на основе целевой движущей силы Fd. Предварительно определенное время T0 является временем, в течение которого водитель запрашивает увеличение движущей силы. Другими словами, предварительно определенное время T0 является временем, в течение которого водитель определяет, что изменение частоты вращения двигателя происходит из-за работы акселератора, предназначенной для ускорения. Если изменение частоты вращения двигателя запаздывает относительно предварительно определенного времени T0, водитель может, возможно, определить, что изменение не связано с работой акселератора.

[0033]

Аналогично, когда величина изменения ΔFd, полученная посредством блока 2041 вычисления определения функционирования с участием водителя, является отрицательной величиной изменения, то есть величиной уменьшения (запрос замедления), как показано на нижней левой диаграмме фиг. 6, определяют, что водитель запрашивает уменьшение движущей силы в течение периода, в котором величина изменения ΔFd не меньше, чем предварительно определенный третий порог J3 (порог определения функционирования с участием водителя), в то время как определяют, что водитель не запрашивает уменьшение движущей силы в течение периода, в котором величина изменения ΔFd не превышает предварительно определенный четвертый порог J4 (порог определения функционирования без участия водителя). Причина, по которой третий порог J3 установлен на значение, превышающее четвертый порог J4, заключается в том, чтобы предотвратить поиск результата определения. Затем, как показано на нижней правой диаграмме фиг. 6, используют таймер для измерения времени от момента времени, в который величина уменьшения целевой движущей силы становится третьим порогом J3 или более, и сигнал признака запроса водителя об уменьшении движущей силы сбрасывается в момент времени, в который предварительно определенное время T0 (показанное как порог T0 на фиг.6) истекло. Предварительно определенное время T0 конкретно не ограничено, но составляет, например, несколько секунд. До тех пор, пока не истечет предварительно определенное время T0, частотой вращения двигателя 11 управляют на основе скорости изменения частоты вращения двигателя 11, подвергнутой процессу запаздывания первого порядка или тому подобному, который будет описан позже, и по истечении предварительно определенного времени T0 частоту вращения двигателя 11 регулируют на основе целевой движущей силы Fd. Предварительно определенное время T0 является временем, в течение которого водитель запрашивает уменьшение движущей силы. Другими словами, предварительно определенное время T0 является временем, в течение которого водитель определяет, что изменение частоты вращения двигателя происходит из-за работы акселератора, предназначенной для замедления. Если изменение частоты вращения двигателя запаздывает относительно предварительно определенного времени T0, водитель может определить, что изменение не связано с работой акселератора.

[0034]

Блок 2041 вычисления определения функционирования с участием водителя использует сигнал признака для вывода результата определения того, находится ли количество изменений целевой движущей силы на стороне увеличения или на стороне уменьшения в блок 2042 вычисления для целевой скорости достижения целевой частоты вращения двигателя.

[0035]

Как показано на фиг. 5, целевую движущую силу Fd, вычисленную посредством блока 201 вычисления целевой движущей силы, сигнал признака определения водителя (сторона увеличения или уменьшения целевой движущей силы), вычисленный посредством блока 2041 вычисления определения функционирования с участием водителя, и сигналы положения переключения и режима движения от датчика 27 S/M вносят в блок 2042 вычисления для целевой скорости достижения целевой частоты вращения двигателя (также в дальнейшем просто именуемый как блок 2042 вычисления целевой скорости достижения), который выполняет процессы, которые будут описаны ниже, а затем выводит целевую скорость достижения целевой частоты вращения двигателя (сторона увеличение или сторона уменьшения целевой движущей силы) в блок 2043 вычисления для скорости изменения целевой частоты вращения двигателя во время функционирования с участием водителя.

[0036]

Фиг. 7 представляет собой блок-схему управления, иллюстрирующую основную конфигурацию блока 2042 вычисления целевой скорости достижения. Верхние блоки управления по фиг. 7 представляют процессы, выполняемые при увеличении целевой движущей силы цели (запрос ускорения), а нижние блоки управления на фиг. 7 представляют процессы, выполняемые при уменьшении целевой движущей силы (запрос замедления). Во-первых, процессы, выполняемые при увеличении целевой движущей силы, будут описаны со ссылкой на верхние блоки управления по фиг. 7. Как показано посредством пунктирной рамки A1 в верхней части фиг. 7, целевая движущая сила Fd, вычисленная посредством блока 201 вычисления целевой движущей силы, подвергается процессу запаздывания первого порядка, используя постоянную времени в качестве параметра. График в пунктирной рамке А1 иллюстрирует движущую силу (вертикальная ось) в зависимости от времени (горизонтальная ось). На этом графике пунктирная линия представляет собой целевую движущую силу, в то время как сплошная линия представляет движущую силу, подвергаемую процессу запаздывания первого порядка (в дальнейшем именуемую псевдо-движущей силой для вычисления частоты вращения двигателя или называемую просто псевдо-движущей силой).

[0037]

Постоянную времени для настоящего варианта осуществления, устанавливают на небольшое значение в случае режима спортивного движения, устанавливают на большое значение в случае режима эко-движения, или устанавливают на среднее значение в случае нормального режима движения в соответствии с сигналами положения переключения и режима движения от датчика 27 S/M. То есть, постоянная времени устанавливается так, что крутизна возрастания псевдо-движущей силы является большой в режиме спортивного движения, в то время как крутизна возрастания псевдо-движущей силы является малой в режиме эко-движения. Даже в том же режиме движения, когда положение переключения является положением тормоза, постоянную времени устанавливают меньше, чем когда положение переключения является положением привода, то есть крутизну возрастания псевдо-движущей силы устанавливают относительно большей. В настоящем варианте осуществления процесс запаздывания первого порядка является примером типичного процесса для величины или коэффициента изменения целевой движущей силы Fd, однако настоящее изобретение не ограничивается использованием процесса запаздывания первого порядка, и достаточно того, что получен профиль, в котором движущая сила постепенно приближается к целевой движущей силе до предварительно определенного времени с задержкой по времени в отношении временной функции целевой движущей силы, т.е. достаточно того, что получается профиль, в котором скорость изменения псевдо-движущей силы постепенно уменьшается со временем. Профиль предпочтительно разработан таким образом, что скорость изменения псевдо-движущей силы увеличивается по мере увеличения величины или коэффициента изменения целевой движущей силы.

[0038]

Блок 2042 вычисления целевой скорости достижения хранит движущую силу, подвергаемую процессу запаздывания первого порядка в качестве псевдо-движущей силы. Кроме того, блок 2042 вычисления целевой скорости достижения обращается к сигналу признака определения водителя (сторона увеличения целевой движущей силы) от блока 2041 вычисления определения функционирования с участием водителя и, как показано сплошной рамкой A2 в верхней части фиг. 7, сохраняет псевдо-движущую силу в момент времени, когда выполняется определение функционирования с участием водителя, как псевдо-движущую силу переключения. Затем блок 2042 вычисления целевой скорости достижения вычисляет значение (от 0 до 1) или его процент (от 0% до 100%) посредством деления разницы между псевдо-движущей силой и псевдо-движущей силой переключения на разницу между целевой движущей силой Fd и псевдо-движущей силой переключения. Это вычисленное значение используется в качестве целевой скорости достижения целевой частоты вращения двигателя (сторона увеличения целевой движущей силы). Хотя подробности будут описаны позже, цель вычисления целевой скорости достижения псевдо-движущей силой целевой движущей силы состоит в том, чтобы использовать ее в качестве опорной при вычислении скорости изменения частоты вращения двигателя, которую требуется получить в конечном итоге в настоящем варианте осуществления, и получить частоту вращения двигателя, которая не дает ощущений дискомфорта.

[0039]

Процессы, выполняемые, когда целевая движущая сила уменьшается, как показано в нижних блоках управления на фиг.7, могут быть получены как симметричные вышеописанным процессам, выполняемым, когда целевая движущая сила увеличивается. Процессы, выполняемые, когда целевая движущая сила уменьшается, будут описаны со ссылкой на нижние блоки управления по фиг. 7. Как показано пунктирной линией B1 в нижней части фиг. 7, целевая движущая сила Fd, вычисленная посредством блока 201 вычисления целевой движущей силы, подвергается процессу запаздывания первого порядка, используя постоянную времени в качестве параметра. График в пунктирной рамке B1 иллюстрирует движущую силу (вертикальная ось) в зависимости от времени (горизонтальная ось). На этом графике пунктирная линия представляет целевую движущую силу, в то время как сплошная линия представляет движущую силу, подвергнутую процессу запаздывания первого порядка (далее по тексту - псевдо-движущая сила для вычисления частоты вращения двигателя или просто псевдо-движущая сила).

[0040]

Постоянная времени настоящего варианта осуществления установлена на небольшое значение в случае режима спортивного движения, установлена на большое значение в случае режима эко-движения или установлена на среднее значение в случае режима нормального движения в соответствии с сигналами положения переключения и режима движения от датчика 27 S/M. Таким образом, постоянная времени устанавливается так, что крутизна убывания псевдо-движущей силы является большой в режиме спортивного движения, тогда как крутизна убывания псевдо-движущей силы является небольшой в режиме эко-движения. Даже в том же режиме движения, когда положение переключения представляет собой положение торможения, постоянная времени задается меньшей, чем таковая, когда положение переключения является положением привода, то есть крутизна убывания псевдо-движущей силы устанавливается относительно большой. В настоящем варианте осуществления процесс запаздывания первого порядка иллюстрируется как типичный процесс для величины или коэффициента изменения целевой движущей силы Fd, но настоящее изобретение не ограничивается использованием процесса запаздывания первого порядка, и достаточно, что получается профиль, в котором движущая сила постепенно приближается к целевой движущей силе до предварительно определенного времени с задержкой по времени относительно функции времени целевой движущей силы, то есть достаточно, чтобы был получен профиль, в котором скорость изменения псевдо-движущей силы постепенно уменьшается со временем. Профиль предпочтительно выполнен таким образом, что скорость изменения псевдо-движущей силы увеличивается с увеличением величины или коэффициента изменения целевой движущей силы.

[0041]

Блок 2042 вычисления целевой скорости достижения хранит движущую силу, подвергнутую процессу запаздывания первого порядка, в качестве псевдо-движущей силы. Кроме того, блок 2042 вычисления целевой скорости достижения обращается к сигналу признака определения водителя (сторона уменьшения целевой движущей силы) от блока 2041 вычисления определения функционирования с участием водителя и, как показано сплошной рамкой B2 в нижней части фиг. 7, сохраняет псевдо-движущую силу в момент времени, когда выполняется определение функционирования с участием водителя, как псевдо-движущую силу переключения. Затем блок 2042 вычисления целевой скорости достижения вычисляет значение (от 0 до 1) или его процент (от 0% до 100%) посредством деления разницы между псевдо-движущей силой и псевдо-движущей силой переключения на разницу между целевой движущей силой Fd и псевдо-движущей силой переключения. Это вычисленное значение используется в качестве целевой скорости достижения целевой частоты вращения двигателя (сторона уменьшения целевой движущей силы). Хотя детали будут описаны позже, цель вычисления целевой скорости достижения псевдо-движущей силой целевой движущей силы заключается в том, чтобы использовать ее в качестве опорной при вычислении скорости изменения частоты вращения двигателя, которая, как требуется в конечном счете, должна быть получена в настоящем варианте осуществления, и получить частоту вращения двигателя, которая не дает неудобное ощущение.

[0042]

Целевая скорость достижения целевой частоты вращения двигателя (сторона увеличения или сторона уменьшенной целевой движущей силы), вычисленная посредством блока 2042 вычисления целевой скорости достижения, является выходной, как показано на фиг. 5, в блок 2043 вычисления для скорости изменения целевой частоты вращения двигателя во время функционирования с участием водителя.

[0043]

Как показано на фиг. 5, целевую частоту вращения двигателя (при запросе выработки мощности) от блока 203 вычисления целевой частоты вращения двигателя, целевую скорость достижения целевой частоты вращения двигателя (сторона увеличения или сторона уменьшения целевой движущей силы) от блока 2042 вычисления целевой скорости достижения, сигнал признака определения функционирования с участием водителя (сторона увеличения или сторона уменьшения целевой движущей силы) от блока 2041 вычисления определения функционирования с участием водителя, и конечную целевую частоту вращения двигателя до предварительно определенного количества вычислений, которую выводят из блока 2045 вывода конечной целевой частоты вращения двигателя, вводят в блок 2043 вычисления для скорости изменения целевой частоты вращения двигателя во время функционирования с участием водителя, который выполняет процессы, которые будут описаны ниже, а затем выводит скорость увеличения целевой частоты вращения двигателя во время функционирования с участием водителя или скорость уменьшения целевой частоты вращения двигателя во время функционирования с участием водителя в блок 2044 вычисления основной целевой частоты вращения двигателя. Конечная целевая частота вращения двигателя до предварительно определенного количества вычислений является конечной целевой частотой вращения двигателя, которую выводят в процедуре за один цикл до или за предварительно определенное количество циклов до.

[0044]

Фиг. 8 представляет собой блок-схему управления, иллюстрирующую основную конфигурацию блока 2043 вычисления для скорости изменения целевой частоты вращения двигателя во время функционирования с участием водителя. Верхние блоки управления по фиг. 8 представляют процессы, выполняемые при увеличении целевой движущей силы (запрос ускорения), а нижние блоки управления по фиг. 8 представляют процессы, выполняемые при уменьшении целевой движущей силы (запрос замедления). Во-первых, процессы, выполняемые при увеличении целевой движущей силы, будут описаны со ссылкой на верхние блоки управления по фиг. 8. Как показано посредством сплошной рамки A3 в верхней части фиг. 8, целевая частота Nt вращения двигателя (когда запрашивается выработка мощности) от блока 203 вычисления целевой частоты вращения двигателя и сигнал признака определения функционирования с участием водителя (сторона увеличения целевой движущей силы) от блока 2041 вычисления определения функционирования с участием водителя используются для сохранения целевой частоты вращения двигателя в момент времени, в который выполняется функционирование с участием водителя, в качестве частоты вращения переключения двигателя, и значение, полученное посредством вычитания частоты вращения переключения двигателя из целевой частоты Nt вращения двигателя (величина изменения частоты вращения двигателя) умножается на целевую скорость достижения целевой частоты вращения двигателя от блока 2042 вычисления целевой скорости достижения. Это потому, что скорость достижения псевдо-движущей силой целевой движущей силы (соответствующей профилю псевдо-движущей силы) должна быть установлена в соответствии со скоростью изменения частоты вращения двигателя.

[0045]

Затем целевую частоту вращения двигателя во время функционирования с участием водителя получают посредством добавления частоты вращения переключения двигателя к значению, полученному посредством умножения целевой скорости достижения целевой частоты вращения двигателя на значение (величина изменения частоты вращения двигателя), которое получено посредством вычитания частоты вращения переключения двигателя из целевой частоты Nt вращения двигателя, и значение (величину увеличения), полученное посредством вычитания конечной целевой частоты NF вращения двигателя до предварительно определенного количества вычислений из целевой частоты вращения двигателя во время функционирования с участием водителя определяют как целевую скорость увеличения частоты вращения двигателя во время функционирования NRu с участием водителя за одно вычисление (одну процедуру). Целевая скорость увеличения частоты вращения двигателя во время функционирования NRu с участием водителя выводится, как показано на фиг. 5, в блок 2044 вычисления основной целевой частоты вращения двигателя.

[0046]

Процессы, выполняемые, когда целевая движущая сила уменьшается, как показано в нижних блоках управления на фиг. 8, могут быть получены как симметричные вышеописанным процессам, выполняемым, когда целевая движущая сила увеличивается. То есть, как показано посредством сплошной рамки B3 в нижней части фиг. 8, целевую частоту Nt вращения двигателя (когда запрашивается выработка мощности) от блока 203 вычисления целевой частоты вращения двигателя и сигнал признака определения функционирования с участием водителя (сторона уменьшения целевой движущей силы) от блока 2041 вычисления определения функционирования с участием водителя используют для сохранения целевой частоты вращения двигателя в момент времени, в который производится определение функционирования с участием водителя, в качестве частоты вращения переключения двигателя и значение, полученное посредством сложения частоты вращения переключения двигателя с целевой частотой Nt вращения двигателя (величина изменения частоты вращения двигателя) умножают на целевую скорость достижения целевой частоты вращения двигателя от блока 2042 вычисления целевой скорости достижения. Это связано с тем, что скорость достижения псевдо-движущей силой целевой движущей силы (соответствующей профилю псевдо-движущей силы) должна соответствовать скорости изменения частоты вращения двигателя.

[0047]

Затем целевую частоту вращения двигателя во время функционирования с участием водителя получают посредством вычитания из частоты вращения переключения двигателя значения, полученного посредством умножения целевой скорости достижения целевой частоты вращения двигателя на величину (величину изменения частоты вращения двигателя), которую получают посредством вычитания целевой частоты Nt вращения двигателя из частоты вращения переключения двигателя, и значение (величина уменьшения), полученное посредством вычитания конечной целевой частоты NF вращения двигателя до предварительно определенного количества вычислений из целевой частоты вращения двигателя во время функционирования с участием водителя, меняют на противоположное по его знаку (абсолютное значение величины уменьшения) и определяют как целевую скорость уменьшения частоты вращения двигателя во время функционирования NRd с участием водителя за одно вычисление (одну процедуру). Целевую скорость уменьшения частоты вращения двигателя во время функционирования NRd с участием водителя выводят, как показано на фиг. 5, в блок 2044 вычисления основной целевой частоты вращения двигателя.

[0048]

Как показано на фиг. 5, сигнал запроса выработки мощности двигателя от блока 202 вычисления целевой вырабатываемой мощности, скорость увеличения целевой частоты вращения двигателя во время функционирования с участием водителя или скорость уменьшения целевой частоты вращения двигателя во время функционирования с участием водителя от блока 2043 вычисления для скорости изменения целевой частоты вращения двигателя во время функционирования с участием водителя, скорость транспортного средства от датчика 26 скорости транспортного средства, сигнал признака определения функционирования с участием водителя (сторона увеличения или уменьшения целевой движущей силы) от блока 2041 вычисления определения функционирования с участием водителя и конечную целевую частоту вращения двигателя до предварительно определенного количества вычислений от блока 2045 вывода конечной целевой частоты вращения двигателя вводят в блок 2044 вычисления основной целевой частоты вращения двигателя, который выполняет процессы, которые будут описаны ниже, а затем выводит основную целевую частоту вращения двигателя (сторона увеличения или уменьшения) в блок 2045 вывода конечной целевой частоты вращения двигателя.

[0049]

На фиг.9 показана блок-схема управления, иллюстрирующая основную конфигурацию блока 2044 вычисления основной целевой частоты вращения двигателя. Верхние блоки управления по фиг. 9 представляют процессы, выполняемые, когда целевая движущая сила увеличивается (запрос ускорения), а нижние блоки управления по фиг. 9 представляют процессы, выполняемые, когда целевая движущая сила уменьшается (запрос замедления). Сначала процессы, выполняемые, когда целевая движущая сила увеличивается, будут описаны со ссылкой на верхние блоки управления по фиг. 9. Вводят скорость транспортного средства от датчика 26 скорости транспортного средства, и скорость NRnu увеличения частоты вращения двигателя, когда блок 2041 вычисления определения функционирования с участием водителя по фиг. 5 определяет, что функционирование с участием водителя не выполняется (это определение также будет упоминаться как определение функционирования без участия водителя), извлекают из проиллюстрированной карты управления. Затем, когда определение функционирования с участием водителя не выполнено, переключатель выбора используется для выбора целевой скорости увеличения частоты вращения двигателя во время определения NRnu функционирования без участия водителя, извлеченного из проиллюстрированной карты управления. В случае, когда водитель нажимает и отпускает педаль акселератора, так что педаль акселератора работает последовательно, и в других аналогичных случаях движение с частотой вращения при оптимальном потреблении топлива может быть затруднено, поскольку целевая частота Nt вращения двигателя (когда запрашивается выработка мощности) меняется последовательно. Соответственно, по прошествии предварительно определенного времени (порог T0), то есть во время определения функционирования без участия водителя, предварительно определенная постоянная скорость увеличения частоты вращения двигателя во время функционирования без участия водителя (постоянная скорость увеличения задана относительно скорости транспортного средства) как в проиллюстрированной карте управления, таким образом, используется в обеспечение того, чтобы конечная целевая частота NF вращения двигателя достигала целевой частоты Nt вращения двигателя (когда запрашивается выработка мощности) в максимально короткий промежуток времени. Напротив, когда определение функционирования с участием водителя выполнено, переключатель выбора используется для выбора целевой скорости увеличения частоты вращения двигателя во время функционирования NRu с участием водителя из блока 2043 вычисления для скорости изменения целевой частоты вращения двигателя во время функционирования с участием водителя.

[0050]

Затем целевая скорость увеличения частоты вращения двигателя во время функционирования с участием водителя или целевая скорость увеличения частоты вращения двигателя во время функционирования без участия водителя, выбранная посредством переключателя выбора, сравнивается с каждым из нижнего предела скорости увеличения частоты вращения двигателя и верхнего предела скорости увеличения частоты вращения двигателя (проиллюстрированы компаратор для сравнения с верхним пределом и компаратор для сравнения с нижним пределом), и процесс ограничения выполняется таким образом, что целевая скорость увеличения частоты вращения двигателя во время функционирования с участием водителя или целевая скорость увеличения частоты вращения двигателя во время функционирования без участия водителя, выбранная посредством переключателя выбора не убывает ниже нижнего предела скорости увеличения частоты вращения двигателя и не превышает верхнего предела скорости увеличения частоты вращения двигателя. Здесь причина ограничения нижнего предела с использованием нижнего предела скорости увеличения частоты вращения двигателя состоит в том, чтобы обеспечить возможность большего соответствия ощущения нарастания звука двигателя ощущению ускорения транспортного средства. Вычисленная таким образом целевая скорость увеличения частоты вращения двигателя (когда запрашивается выработка мощности) вводится в переключатель выбора вместе с предварительно определенной целевой скоростью увеличения частоты вращения двигателя (когда выработка мощности не запрашивается). Когда запрос выработки мощности двигателя выдается из блока 202 вычисления целевой вырабатываемой мощности, показанного на фиг. 2, выбирается целевая скорость увеличения частоты вращения двигателя (когда запрашивается выработка мощности), в то время как, когда запрос выработки мощности двигателя не выдается, выбирается целевая скорость увеличения частоты вращения двигателя (когда выработка мощности не запрашивается). Затем целевая скорость увеличения частоты вращения двигателя (когда запрашивается или не запрашивается выработка мощности), выбранная посредством переключателя выбора, добавляется к конечной целевой частоте NF вращения двигателя до предварительно определенного количества вычислений для получения основной целевой частоты NBu вращения двигателя. Основная целевая частота NBu вращения двигателя выводится в блок 2045 вывода конечной целевой частоты вращения двигателя.

[0051]

Процессы, выполняемые, когда целевая движущая сила уменьшается, как показано в нижних блоках управления на фиг. 9, могут быть получены как симметричные вышеописанным процессам, выполняемым, когда целевая движущая сила увеличивается. То есть вводится скорость транспортного средства от датчика 26 скорости транспортного средства, и скорость NRnd уменьшения частоты вращения двигателя, когда блок 2041 вычисления определения функционирования с участием водителя по фиг. 5 определяет, что функционирование с участием водителя не выполняется (это определение также будет упоминаться как определение функционирования без участия водителя), извлекается из проиллюстрированной карты управления. Затем, когда определение функционирования с участием водителя не выполнено, переключатель выбора используется для выбора целевой скорости уменьшения частоты вращения двигателя во время определения NRnd функционирования без участия водителя, извлеченного из проиллюстрированной карты управления. В случае, когда водитель нажимает и отпускает педаль акселератора, так что педаль акселератора работает последовательно, и в других аналогичных случаях движение с частотой вращения при оптимальном потреблении топлива может быть затруднено, поскольку целевая частота Nt вращения двигателя (когда запрашивается выработка мощности) изменяется последовательно. Соответственно, по истечении предварительно определенного времени (порог T0), то есть во время определения функционирования без участия водителя, предварительно определенная постоянная скорость уменьшения частоты вращения двигателя во время функционирования без участия водителя, (постоянная скорость уменьшения задается относительно скорости транспортного средства) как в проиллюстрированной карте управления, таким образом, используется в обеспечение того, чтобы конечная целевая частота NF вращения двигателя достигала целевой частоты Nt вращения двигателя (когда запрашивается выработка мощности) в максимально короткий промежуток времени. Напротив, когда определение функционирования с участием водителя выполнено, переключатель выбора используется для выбора целевой скорости уменьшения частоты вращения двигателя во время функционирования NRd с участием водителя из блока 2043 вычисления для скорости изменения целевой частоты вращения двигателя во время функционирования с участием водителя.

[0052]

Затем целевая скорость уменьшения частоты вращения двигателя во время функционирования с участием водителя или целевая скорость уменьшения частоты вращения двигателя во время функционирования без участия водителя, выбранная посредством переключателя выбора, сравнивается с каждым из нижнего предела скорости уменьшения частоты вращения двигателя и верхнего предела скорости уменьшения частоты вращения двигателя (проиллюстрированы компаратор для сравнения с верхним пределом и компаратор для сравнения с нижним пределом), и процесс ограничения выполняется таким образом, что целевая скорость уменьшения частоты вращения двигателя во время функционирования с участием водителя или целевая скорость уменьшения частоты вращения двигателя во время функционирования без участия водителя, выбранная посредством переключателя выбора, не убывает ниже нижнего предела скорости уменьшения частоты вращения двигателя и не превышает верхнего предела скорости уменьшения частоты вращения двигателя. Здесь причина ограничения нижнего предела с использованием нижнего предела скорости уменьшения частоты вращения двигателя состоит в том, чтобы обеспечить возможность большего соответствия ощущения нарастания звука двигателя ощущению замедления транспортного средства. Вычисленная таким образом целевая скорость уменьшения частоты вращения двигателя (когда запрашивается выработка мощности) вводится в переключатель выбора вместе с предварительно определенной целевой скоростью уменьшения частоты вращения двигателя (когда выработка мощности не запрашивается). Когда запрос выработки мощности двигателя выдается из блока 202 вычисления целевой вырабатываемой мощности, показанного на фиг. 2, выбирается целевая скорость уменьшения частоты вращения двигателя (когда запрашивается выработка мощности), в то время как, когда запрос выработки мощности двигателя не выдается, выбирается целевая скорость уменьшения частоты вращения двигателя (когда выработка мощности не запрашивается). Затем целевая скорость уменьшения частоты вращения двигателя (когда запрашивается или не запрашивается выработка мощности), выбранная посредством переключателя выбора, добавляется к конечной целевой частоте NF вращения двигателя до предварительно определенного количества вычислений для получения основной целевой частоты NBd вращения двигателя. Основная целевая частота NBd вращения двигателя выводится в блок 2045 вывода конечной целевой частоты вращения двигателя.

[0053]

Обращаясь снова к фиг. 5, целевая частота Nt вращения двигателя (когда запрашивается выработка мощности) от блока 203 вычисления целевой частоты вращения двигателя по фиг. 2, и основная целевая частота вращения двигателя (сторона NBu увеличения или сторона NBd уменьшения) от блока 2044 вычисления основной частоты вращения двигателя вводятся в блок 2045 вывода конечной целевой частоты вращения двигателя. Когда запрос выработки мощности двигателя выдается из блока 202 вычисления целевой вырабатываемой мощности по фиг. 2, блок 2045 вывода конечной целевой частоты вращения двигателя выбирает меньшую из целевой частоты Nt вращения двигателя (когда запрашивается выработка мощности) и основной частоты вращения двигателя (сторона NBu увеличения) и большую из выбранной частоты вращения двигателя и основной частоты вращения двигателя (сторона NBd уменьшения). В случае, когда водитель нажимает и отпускает педаль акселератора, так что педаль акселератора работает последовательно, и в других аналогичных случаях движение с частотой вращения при оптимальном потреблении топлива может быть затруднено, поскольку целевая частота Nt вращения двигателя (когда запрашивается выработка мощности) изменяется последовательно. Соответственно, по истечении предварительно определенного времени (порог T0) (то есть во время определения функционирования без участия водителя), как описано со ссылкой на фиг. 9, тем самым используется предварительно определенная постоянная скорость увеличения частоты вращения двигателя во время функционирования без участия водителя в обеспечение достижения конечной целевой частотой NF вращения двигателя целевой частоты Nt вращения двигателя (когда запрашивается выработка мощности). После этого целевая частота Nt вращения двигателя (когда запрашивается выработка мощности) используется для управления частотой вращения двигателя. Целевая частота Nt вращения двигателя (когда запрашивается выработка мощности) определяется на основе целевой движущей силы Fd, как описано для блока 203 вычисления целевой частоты вращения двигателя по фиг. 2. Выбранная таким образом частота вращения двигателя выводится как конечная целевая частота NF вращения двигателя в блок 205 вычисления целевого крутящего момента двигателя, показанный на фиг. 2. Кроме того, выбранная таким образом частота вращения двигателя делится на коэффициент увеличения скорости мультипликатора 112 для получения значения команды частоты вращения генератора для генератора 12, и эта команда выводится в контроллер 22 генератора.

[0054]

Когда запрос выработки мощности двигателя не выдается из блока 202 вычисления целевой вырабатываемой мощности по фиг. 2, блок 2045 вывода конечной целевой частоты вращения двигателя выбирает меньшее из отдельно определенной целевой частоты вращения двигателя (когда не запрашивается выработка мощности) и основной частоты вращения двигателя (сторона NBu увеличения) и большее из выбранной частоты вращения двигателя и основной частоты вращения двигателя (сторона NBd уменьшения). Выбранная таким образом частота вращения двигателя выводится как конечная целевая частота NF вращения двигателя в блок 205 вычисления целевого крутящего момента двигателя, показанный на фиг. 2. Кроме того, выбранная таким образом частота вращения двигателя делится на коэффициент увеличения скорости мультипликатора 112 для получения значения команды частоты вращения генератора для генератора 12, и эта команда выводится в контроллер 22 генератора.

[0055]

Обращаясь снова к фиг. 2, конечная целевая частота NF вращения двигателя от блока 204 вычисления конечной целевой частоты вращения двигателя и целевая вырабатываемая мощность Pe от блока 202 вычисления целевой вырабатываемой мощности вводятся в блок 205 вычисления целевого крутящего момента двигателя, который делит целевую вырабатываемую мощность Pe на конечную целевую частоту NF вращения двигателя для получения основного целевого крутящего момента двигателя, ограничивает верхний предел и нижний предел, используя предварительно определенный нижний предел крутящего момента двигателя и верхний предел крутящего момента двигателя, и затем вычисляет значение команды Te крутящего момента двигателя. Значение команды Te крутящего момента двигателя выводится в контроллер 21 двигателя, и двигатель 11 приводится в действие в соответствии с значением команды.

[0056]

Далее будет описан пример работы гибридного транспортного средства 1 вышеописанного варианта осуществления. Фиг. 10 - блок-схема последовательности операций, иллюстрирующая содержание обработки, выполняемое посредством контроллера 20 транспортного средства, а фиг. 11 является набором временных диаграмм (a) - (g), иллюстрирующих характер изменения соответствующих параметров в типичной ситуации для гибридного транспортного средства 1. Процессы последовательности операций в блок-схеме на фиг. 10 повторяются с интервалами времени, например, 10 мсек.

[0057]

Фиг. 11 иллюстрирует состояние или ситуацию, в которой водитель ведет гибридное транспортное средство. Как показано на графике величины/времени нажатия педали акселератора на фиг. 11 (a), водитель нажимает педаль акселератора с постоянной величиной в течение времени от t0 до t1, затем дополнительно нажимает педаль акселератора в течение времени от t1 до t4 и поддерживает величину нажатия после времени t4. Настоящий вариант осуществления может применяться не только к гибридному транспортному средству, в котором водитель выполняет ручное вождение, но также к гибридному транспортному средству, имеющему так называемую автоматическую (автономную) функцию вождения, в которой такое функционирование акселератора выполняется в соответствии с значением команды акселератора, которое вычисляется с использованием автоматической (автономной) функции вождения.

[0058]

Как показано на графике зависимости скорости транспортного средства от времени на фиг. 11 (b), управление водителя акселератором позволяет транспортному средству двигаться с постоянной скоростью в течение времени от t0 до t1, а затем ускоряться в момент времени t1 для постепенного увеличения скорости транспортного средства. График зависимости SOC аккумулятора от времени на фиг. 11 (d) иллюстрируется разными толщинами линий, когда состояние заряда SOC аккумулятора 14 является большим, средним и малым, и толщины линий изменения параметров на каждом графике на фиг. 11 (e) - (g) проиллюстрированы так, чтобы соответствовать состояниям заряда SOC (большой/средний/маленький) аккумулятора 14. График зависимости движущей силы от времени на фиг. 11 (c) иллюстрирует целевую движущую силу Fd, вычисленную посредством блока 201 вычисления целевой движущей силы по фиг. 2, и псевдо-движущую силу (псевдо-движущую силу для вычисления частоты вращения двигателя), вычисленную посредством блока 2042 вычисления целевой скорости достижения по фиг. 5 и 7. График зависимости мощности от времени по фиг. 11 (e) иллюстрирует целевую мощность привода, требуемую для электродвигателя 13, соответствующую целевой движущей силе Fd, и доступную выходную мощность аккумулятора 14 (когда состояние заряда SOC аккумулятора 14 большое/среднее/маленькое). График зависимости целевой вырабатываемой мощности от времени на фиг.11 (f) иллюстрирует целевую вырабатываемую мощность, вычисленную посредством блока 202 вычисления целевой вырабатываемой мощности по фиг. 2 для каждого состояния заряда SOC (большой/средний/маленький) аккумулятора 14. На фиг. 11 (e), ситуация, в которой доступная выходная мощность аккумулятора равна P1, и целевая вырабатываемая мощность в течение времени t1-t7 по фиг. 11 (f) составляет 0 кВт, то есть двигатель 11 находится в остановленном состоянии (обозначенном штрих-пунктирными линиями как на фиг. 11 (e), так и на фиг. 11 (f)) будет описана позже. График зависимости частоты вращения двигателя от времени на фиг. 11 (g) иллюстрирует конечную целевую частоту NF вращения двигателя, вычисленную посредством блока 2045 вывода конечной целевой частоты вращения двигателя по фиг. 5 для каждого состояния заряда SOC (большой/средний/маленький) аккумулятора 14.

[0059]

Предполагается, что в момент времени t0 графика зависимости целевой вырабатываемой мощности от времени по фиг. 11 (f), целевая вырабатываемая мощность составляет, например, 10 кВт из-за запроса зарядки аккумулятора 14 или т.п., и частота вращения двигателя по фиг. 11 (g) представляет собой частоту вращения, соответствующую выработке мощности, равной 10 кВт, например, 1500 об/мин. В этом состоянии на графике зависимости мощности от времени по фиг. 11 (e), при условии, что требуемая мощность привода изменяется в соответствии с графиком зависимости мощности от времени на фиг. 11 (e), когда водитель выполняет управление акселератором, как показано на графике фиг. 11 (a), когда состояние заряда SOC аккумулятора 14 мало, требуемая мощность привода превышает доступную выходную мощность аккумулятора в момент времени t2, и, следовательно, выдается запрос выработки мощности двигателя, когда состояние заряда SOC аккумулятор 14 является средним, запрос выработки мощности двигателя аналогичным образом выдается в момент времени t3. Аналогично, когда состояние заряда SOC аккумулятора 14 является большим, запрос выработки мощности двигателя выдается в момент времени t5. Это продемонстрировано на графике зависимости целевой вырабатываемой мощности от времени на фиг. 11 (е). Когда целевая вырабатываемая мощность увеличивается (или уменьшается, хотя это не показано), частота вращения двигателя 11 должна соответственно увеличиваться (или уменьшаться).

[0060]

В гибридном транспортном средстве 1 по настоящему варианту осуществления, когда частота вращения двигателя 11 увеличивается или уменьшается, когда целевая вырабатываемая мощность увеличивается или уменьшается, если предпринята попытка быстрого увеличения или уменьшения частоты вращения для соответствия целевой движущей силе Fd в течение времени t1-t4, как указано пунктирными линиями на графике на фиг. 11 (g), частота вращения двигателя 11 должна быть быстро увеличена или уменьшена, поскольку чувствительность двигателя 11 к положению педали акселератора ниже, чем чувствительность электродвигателя 13. Соответственно, звук двигателя может резко увеличиваться, даже если водитель не сильно нажимает на педаль акселератора , или звук двигателя может резко уменьшаться, даже если водитель не сильно отпускает педаль акселератора, и, таким образом, может возникать внезапное ощущение дискомфорта для водителя. Дополнительно или альтернативно, если предпринята попытка увеличить или уменьшить частоту вращения двигателя 11 для ее соответствия целевой движущей силе Fd в течение времени t4-t6 на графике на фиг. 11 (g), ощущение нарастания или убывания звука двигателя может быть низким по отношению к ощущению ускорения или замедления транспортного средства, поскольку движущая сила электродвигателя 13 линейно увеличивается или уменьшается, тогда как увеличение или уменьшение частоты вращения двигателя 11 мала. В гибридном транспортном средстве 1 настоящего варианта осуществления частотой вращения двигателя 11 управляют для ослабления ощущения дискомфорта, такого как внезапное ощущение дискомфорта или ощущение дискомфорта при нарастании или убывании звука двигателя.

[0061]

Таким образом, в этой ситуации осуществляется следующее управление. На этапе S1, показанном на фиг. 10, соответствующие сигналы положения педали акселератора от датчика 25 акселератора, скорости транспортного средства от датчика 26 скорости транспортного средства и положения переключения и режима движения от датчика 27 S/M вводятся в блок 201 вычисления целевой движущей силы. На этапе S2 блок 201 вычисления целевой движущей силы выполняет процессы, показанные на фиг. 3 для получения целевой движущей силы Fd и значения команды крутящего момента приводного двигателя .

[0062]

На этапе S3 блок 202 вычисления целевой вырабатываемой мощности умножает целевую движущую силу Fd от блока 201 вычисления целевой движущей силы на скорость транспортного средства от датчика 26 скорости транспортного средства для получения целевой мощности привода и вычитает доступную выходную мощность аккумулятора, получаемую от контроллера 23 аккумулятора, из целевой мощности привода для получения основной целевой вырабатываемой мощности. Вырабатываемая мощность, которая должна добавляться по мере необходимости (например, требуемая зарядная мощность, полученная из состояния SOC заряда аккумулятора 14), добавляется к основной целевой вырабатываемой мощности для получения целевой вырабатываемой мощности Pe.

[0063]

На этапе S4 соответствующие сигналы целевой вырабатываемой мощности Pe, вычисленной посредством блока 202 вычисления целевой вырабатываемой мощности, целевой движущей силы Fd, вычисленной посредством блока 201 вычисления целевой движущей силы, и положения переключения и режима движения от датчика 27 S/M вводятся в блок 203 вычисления целевой частоты вращения двигателя, который выполняет процессы, показанные на фиг. 4 для получения целевой частоты Nt вращения двигателя (когда запрашивается выработка мощности).

[0064]

На этапе S5 выполняется определение того, выполняется ли функционирование с участием водителя, на основе результата определения функционирования с участием водителя, вычисленного посредством блока 2041 вычисления определения функционирования с участием водителя, проиллюстрированного на фиг. 5 и 6. Когда определено, что функционирование с участием водителя выполняется, процесс переходит к этапу S6, в то время как при определении, что функционирование с участием водителя не выполняется, процесс переходит к этапу S8. Выполняется ли функционирование с участием водителя, определяется на основании того, превышает ли абсолютное значение величины увеличения или уменьшения целевой движущей силы Fd порог J1 или J3. То есть, когда величина нажатия или величина отпускания педали акселератора водителем больше, чем порог, определяется, что функционирование с участием водителя выполняется, тогда как, когда величина нажатия или величина отпускания меньше порога, определяется, что функционирования с участием водителя не было выполнено. В ситуации на фиг. 11, в общем, определяют, что функционирование с участием водителя выполняется в течение времени от t1 до t4, и определяют, что функционирования с участием водителя не было выполнено в течение времени от t0 до t1 и после времени t4.

[0065]

На этапе S6, как показано на фиг. 5, целевая движущая сила Fd, вычисленная посредством блока 201 вычисления целевой движущей силы, сигнал признака определения водителя (сторона увеличения или уменьшения целевой движущей силы), вычисленный посредством блока 2041 вычисления определения функционирования с участием водителя, и сигналы положения переключения и режима движения от датчика 27 S/M вводятся в блок 2042 вычисления целевой скорости достижения, который выполняет процессы, показанные на фиг. 7 для вычисления целевой скорости достижения целевой частоты вращения двигателя (сторона Ru увеличения или сторона Rd уменьшения целевой движущей силы). Согласно этапу S6, после времени t1, показанного на фиг. 11, получают профиль псевдо-движущей силы для вычисления частоты вращения двигателя, подвергаемой процессу запаздывания первого порядка относительно целевой движущей силы Fd (проиллюстрированной пунктирной линией на графике фиг. 11 (c)), и скорость достижения псевдо-движущей силой целевой движущей силы Fd в единицу времени после момента времени t1.

[0066]

На этапе S7, как показано на фиг. 5, целевая частота вращения двигателя (когда запрашивается выработка мощности) от блока 203 вычисления целевой частоты вращения двигателя, целевая скорость достижения целевой частоты вращения двигателя (сторона увеличения или сторона уменьшения целевой движущей силы) от блока 2042 вычисления целевой скорости достижения, сигнал признака определения функционирования с участием водителя (сторона увеличения или уменьшения целевой движущей силы) от блока 2041 вычисления определения функционирования с участием водителя и конечная целевая частота вращения двигателя до предварительно определенного количества вычислений, которая выводится из блока 2045 вывода конечной целевой частоты вращения двигателя, вводятся в блок 2043 вычисления для скорости изменения целевой частоты вращения двигателя во время функционирования с участием водителя, которое выполняет процессы, проиллюстрированные на фиг. 8 для вычисления целевой скорости увеличения частоты вращения двигателя во время функционирования NRu с участием водителя или целевой скорости уменьшения частоты вращения двигателя во время функционирования NRd с участием водителя.

[0067]

В соответствии с процессами на этапах S6 и S7 получают целевую скорость увеличения частоты вращения двигателя во время функционирования NRu с участием водителя или целевую скорость уменьшения частоты вращения двигателя во время функционирования NRd с участием водителя, соответствующую скорости достижения псевдо-движущей силы для вычисления частоты вращения двигателя, показанной на фиг. 11 (c), и частота вращения двигателя 11 плавно изменяется, даже когда величина изменения целевой движущей силы Fd велика.

[0068]

Когда на этапе S5 определено, что не было выполнено функционирования с участием водителя (например, в течение времени t0-t1 на фиг.11), процесс переходит к этапу S8. На этапе S8 вычисляется скорость изменения целевой частоты вращения двигателя во время функционирования без участия водителя (скорость NRnu увеличения или скорость NRnd уменьшения), когда функционирования с участием водителя не было выполнено.

[0069]

На этапе S9 сигнал запроса выработки мощности двигателя от блока 202 вычисления целевой мощности, скорость увеличения целевой частоты вращения двигателя во время функционирования с участием водителя или целевая скорость уменьшения частоты вращения двигателя во время функционирования с участием водителя от блока 2043 вычисления для скорости изменения целевой частоты вращения двигателя во время функционирования с участием водителя, скорость транспортного средства от датчика 26 скорости транспортного средства, сигнал признака определения функционирования с участием водителя (сторона увеличения или уменьшения целевой движущей силы) от блока 2041 вычисления определения функционирования с участием водителя, и конечная целевая частота вращения двигателя до предварительно определенного количества вычислений от блока 2045 вывода конечной целевой частоты вращения двигателя вводятся в блок 2044 вычисления основной целевой частоты вращения двигателя, который выполняет процессы, проиллюстрированные на фиг. 9 для вычисления основной целевой частоты вращения двигателя (сторона NBu увеличения или сторона NBd уменьшения).

[0070]

На этапе S10, целевая частота Nt вращения двигателя (когда запрашивается выработка мощности) от блока 203 вычисления целевой частоты вращения двигателя и основная целевая частота вращения двигателя (сторона NBu увеличения или сторона NBd уменьшения) от блока 2044 вычисления основной частоты вращения двигателя вводятся в блок 2045 вывода конечной целевой частоты вращения двигателя. Когда запрос выработки мощности двигателя выдается из блока 202 вычисления целевой вырабатываемой мощности, блок 2045 вывода конечной целевой частоты вращения двигателя выбирает меньшее из целевой частоты Nt вращения двигателя (когда запрашивается выработка мощности) и основной частоты вращения двигателя (сторона увеличения NBu) и большее из выбранной частоты вращения двигателя и основной частоты вращения двигателя (сторона уменьшения NBd), таким образом, чтобы получить конечную целевую частоту NF вращения двигателя. Кроме того, выбранная таким образом частота вращения двигателя делится на коэффициент увеличения скорости мультипликатора 112 для получения значения команды частоты вращения генератора для генератора 12.

[0071]

На этапе S11 конечная целевая частота NF вращения двигателя от блока 204 вычисления конечной целевой частоты вращения двигателя и целевая вырабатываемая мощность Pe от блока 202 вычисления целевой вырабатываемой мощности вводятся в блок 205 вычисления целевого крутящего момента двигателя, который делит конечную целевую частоту NF вращения двигателя на целевую вырабатываемую мощность Pe для получения основного целевого крутящего момента двигателя, ограничивает верхний предел и нижний предел, используя предварительно определенный нижний предел крутящего момента двигателя и верхний предел крутящего момента двигателя, а затем вычисляет значение Te команды крутящего момента двигателя. Значение Te команды крутящего момента двигателя выводится в контроллер 21 двигателя, и двигатель 11 приводится в действие в соответствии со значением команды. В блоке 2041 вычисления определения функционирования с участием водителя по фиг. 6, таймер используется для измерения времени от момента времени, в который величина увеличения целевой движущей силы становится первым порогом J1 или более, или момента времени, в который величина уменьшения целевой движущей силы становится третьим порогом J3 или более, и сигнал признака запроса водителя на увеличение или уменьшение движущей силы сбрасывается в момент времени, в который предварительно определенное время T0 (проиллюстрированное как порог T0 на фиг.6) истекло. Следовательно, до истечения предварительно определенного времени T0 частота вращения двигателя 11 управляется на основе скорости изменения частоты вращения двигателя 11, подвергнутой описанному выше процессу запаздывания первого порядка или тому подобному, но по истечении предварительно определенного времени T0 функционирование с участием водителя не должно выполняться, это этап S5 на фиг. 10, и поэтому процесс переходит к этапу S8, на котором частота вращения двигателя 11 управляется на основе целевой движущей силы Fd.

[0072]

Затем будет описан поток управления для ситуации, в которой, как показано штрих-пунктирными линиями на фиг. 11 (e) - 11 (g), доступная выходная мощность аккумулятора 14 равна P1, а целевая вырабатываемая мощность в течение времени t1-t7 по фиг. 11 (f) составляет 0 кВт, то есть двигатель 11 находится в остановленном состоянии. В случае, когда состояние заряда SOC аккумулятора 14 является достаточным, а целевая движущая сила для транспортного средства мала из-за движения на низкой скорости, и в других аналогичных случаях подача питания на электродвигатель 13 и аккумулятор 14 посредством генератора 12 не обязательна, и двигатель 11 остановлен. Даже в такой ситуации управление вышеописанным содержанием обработки, проиллюстрированным на блок-схеме последовательности операций на фиг. 10, выполняется.

[0073]

В течение времени t1-t4, в котором двигатель 11 остановлен, когда целевая движущая сила Fd, показанная на фиг. 11 (c) превышает предварительно определенный порог (J1 на фиг. 6) из-за управления водителя акселератором, показанного на фиг. 11 (а), на этапе S6 по фиг. 10, как показано на фиг. 5, целевая движущая сила Fd, вычисленная посредством блока 201 вычисления целевой движущей силы, сигнал признака определения водителя (сторона увеличения целевой движущей силы), вычисленный посредством блока 2041 вычисления определения функционирования с участием водителя, и сигналы положения переключения и режима движения от датчика 27 S/M вводятся в блок 2042 вычисления целевой скорости достижения, который выполняет процессы, показанные на фиг. 7 для вычисления целевой скорости достижения целевой частоты вращения двигателя (сторона Ru увеличения целевой движущей силы). Согласно этапу S6, после времени t1, показанного на фиг. 11, получают профиль псевдо-движущей силы для вычисления частоты вращения двигателя, подвергаемой процессу запаздывания первого порядка относительно целевой движущей силы Fd (обозначенной пунктирной линией на графике фиг. 11 (c)), и скорость достижения псевдо-движущей силы для целевой движущей силы Fd в единицу времени после момента времени t1.

[0074]

На этапе S7, как показано на фиг. 5, целевая частота вращения двигателя (когда запрашивается выработка мощности) от блока 203 вычисления целевой частоты вращения двигателя, целевая скорость достижения целевой частоты вращения двигателя (сторона увеличения целевой движущей силы) от блока 2042 вычисления целевой скорости достижения, сигнал признака определения функционирования с участием водителя (сторона увеличения целевой движущей силы) от блока 2041 вычисления определения функционирования с участием водителя и конечная целевая частота вращения двигателя до предварительно определенного количества вычислений, которая выводится из блока 2045 вывода конечной целевой частоты вращения двигателя, вводятся в блок 2043 вычисления скорости изменения целевой частоты вращения двигателя во время функционирования с участием водителя, который выполняет процессы, показанные на фиг. 8 для вычисления скорости увеличения целевой частоты вращения двигателя во время функционирования NRu с участием водителя. В соответствии с процессами на этапах S6 и S7 получают скорость увеличения целевой частоты вращения двигателя во время функционирования NRu с участием водителя (также называется оценочной траекторией, которая является безразмерной траекторией частоты вращения двигателя в ситуации, потому что двигатель 11 находится в остановленном состоянии), соответствующую скорости достижения псевдо-движущей силы для вычисления частоты вращения двигателя, как показано штрих-пунктирной линией с двумя точками на фиг. 11 (g), и даже когда величина изменения целевой движущей силы Fd является большой, сохраняется профиль, в котором частота вращения двигателя 11 умеренно изменяется. В течение времени t1-t7 сохраняется время t1, в которое целевая движущая сила Fd превышает предварительно определенный порог, и вычисляется оценочная траектория частоты вращения двигателя, начиная с момента времени t1, но двигатель 11 сохраняет остановленное состояние, поскольку запрос выработки мощности не выдается в генератор 12.

[0075]

Когда требуемая мощность привода превышает доступную выходную мощность P1 аккумулятора в момент времени t7, как показано на фиг. 11 (e), запрос выработки мощности двигателя выводится из блока 202 вычисления целевой вырабатываемой мощности в блок 204 вычисления конечной целевой частоты вращения двигателя. Посредством этой операции, как показано штрих-пунктирной линией на фиг. 11 (g), операция запуска двигателя 11 выполняется в течение времени t7-t8, и после того, как двигатель 11 достигает полного внутреннего сгорания в момент времени t8, частота вращения двигателя 11 управляется вдоль оценочной траектории частоты вращения двигателя, которая предварительно вычисляется, как описано выше. Отметим, однако, что частота вращения двигателя в операции запуска двигателя 11 в течение времени t7-t8 управляется к частоте вращения, необходимой для операции запуска двигателя. Чтобы подавить быстрое увеличение частоты вращения, скорость изменения частоты вращения двигателя в течение периода (время t8-t5 на фиг.11 (g)), в котором частота вращения достигает частоты вращения, основывается на оценочной траектории движения. Частота вращения двигателя от момента времени, когда двигатель 11 достигает состояния полного внутреннего сгорания в момент времени t8, ограничивается предварительно определенным значением или меньше. После того, как частота вращения двигателя 11 достигает оценочной траектории в момент времени t5, частота вращения двигателя 11 управляется вдоль частоты вращения оценочной траектории.

[0076]

В блоке 2041 вычисления определения функционирования с участием водителя по фиг. 6, таймер используется для измерения времени от момента времени, в который величина увеличения целевой движущей силы становится первым порогом J1 или более, и определение функционирования с участием водителя (сигнал признака запроса водителя на увеличение движущей силы) сбрасывается в момент времени, в который предварительно определенное время T0 (проиллюстрированное как порог T0 на фиг.6) истекло. Поэтому до тех пор, пока не истечет предварительно определенное время T0, частота вращения двигателя 11 управляется на основе скорости изменения частоты вращения двигателя 11, подвергнутой описанному выше процессу запаздывания первого порядка или тому подобному (то есть на основе оценочной траектории частоты вращения двигателя), но по истечении предварительно определенного времени T0 на этапе S5 по фиг. 10 определяется, что функционирования с участием водителя нет, и поэтому процесс переходит к этапу S8, на котором частота вращения двигателя 11 управляется на основе целевой движущей силы Fd и/или запроса с целью нагрева воздуха, зарядки аккумулятора, и т.п.

[0077]

Фиг. 12 является набором временных диаграмм, иллюстрирующих характер изменения соответствующих параметров в другой ситуации для гибридного транспортного средства 1 настоящего варианта осуществления. Как и в ситуации на фиг. 11, как показано на фиг. 11 (g), сохраняется время t1, в которое целевая движущая сила Fd превышает предварительно определенный порог, и вычисляется безразмерная оценочная траектория частоты вращения двигателя, начиная с момента времени t1, но, как показано на фиг. 12 (e) и 12 (f), когда момент времени, в который требуемая мощность привода превышает доступную выходную мощность аккумулятора, находится после того, как истекло предварительно определенное время T0, операция запуска двигателя 11 выполняется в течение времени t9-t10, и после того, как двигатель 11 достигает полного внутреннего сгорания в момент времени t10, частота вращения двигателя 11 управляется со скоростью изменения частоты вращения двигателя, которая представляет собой отдельно определенную постоянную скорость изменения и которая меньше, чем скорость изменения частоты вращения двигателя в течение времени t8-t5 на фиг. 11 (g). Это происходит потому, что после того, как предварительно определенное время T0 истекло с момента времени t1, в который целевая движущая сила Fd превышает предварительно определенный порог, частота вращения двигателя 11 управляется на основе целевой движущей силы Fd и/или запроса с целью нагрева воздуха, зарядки аккумулятора и т.д., но скорость изменения частоты вращения уменьшается, чтобы ослабить ощущение дискомфорта, создаваемое для водителя.

[0078]

Как описано выше, согласно способу управления и устройству управления для гибридного транспортного средства 1 по настоящему варианту осуществления скорость изменения частоты вращения двигателя 11 задается в соответствии с величиной или коэффициентом изменения целевой движущей силы; следовательно, даже когда величина увеличения или скорость увеличения целевой движущей силы является большой, быстрое увеличение частоты вращения двигателя 11 может быть подавлено, в то время как даже когда величина уменьшения или скорость уменьшения целевой движущей силы является большой, быстрое уменьшение частоты вращения двигателя 11 может быть подавлено. В частности, даже когда момент запуска двигателя изменяется из-за доступной выходной мощности аккумулятора или тому подобного, частота вращения двигателя управляется вдоль идеального профиля (оценочной траектории) частоты вращения двигателя в соответствии с моментом времени, в который целевая движущая сила изменяется. В результате ощущение дискомфорта, воспринимаемое водителем, такое как внезапное ощущение дискомфорта, может быть смягчено. Другими словами, водитель может чувствовать изменение звука двигателя и индикацию тахометра двигателя в ответ на работу акселератора без ощущения дискомфорта.

[0079]

Согласно способу управления и устройству управления для гибридного транспортного средства по настоящему варианту осуществления, когда частота вращения двигателя управляется на основе вычисленной оценочной траектории после того, как двигатель достигает состояния полного внутреннего сгорания, скорость изменения частоты вращения в течение периода, в котором частота вращения достигает частоты вращения на основе вычисленной оценочной траектории из частоты вращения в состоянии полного внутреннего сгорания, ограничивается до предварительно определенного значения или меньше; следовательно, быстрое увеличение частоты вращения двигателя после полного внутреннего сгорания может быть подавлено, и водитель может чувствовать изменение звука двигателя и индикацию тахометра двигателя в ответ на работу акселератора без ощущения дискомфорта. Кроме того, когда частота вращения двигателя увеличивается, может быть случай, в котором величина выработки мощности соответственно уменьшается, и целевая движущая сила не может быть достигнута, но тем самым может быть подавлено быстрое увеличение частоты вращения двигателя для снижения уменьшения движущей силы.

[0080]

Согласно способу управления и устройству управления для гибридного транспортного средства по настоящему варианту осуществления, когда скорость изменения частоты вращения двигателя задается в соответствии с величиной или коэффициентом изменения целевой движущей силы, скорость изменения частота вращения двигателя устанавливается выше с увеличением величины или коэффициента изменения целевой движущей силы; следовательно, ощущение дискомфорта, воспринимаемое водителем, такое как внезапное ощущение дискомфорта, может быть смягчено, и в то же время водитель может чувствовать изменение звука двигателя и индикацию тахометра двигателя в ответ на работу акселератора.

[0081]

Согласно способу управления и устройству управления для гибридного транспортного средства по настоящему варианту осуществления, когда скорость изменения частоты вращения двигателя 11 задается в соответствии с величиной или коэффициентом изменения целевой движущей силы, скорость изменения частоты вращения двигателя 11 устанавливается в соответствии с псевдо-движущей силой, получаемой посредством воздействия на целевую движущую силу процесса запаздывания первого порядка; следовательно, как показано во время t1-t4 на фиг. 11 (g), даже когда величина увеличения или скорость увеличения целевой движущей силы является большой, быстрое увеличение частоты вращения двигателя 11 может быть подавлено, в то время как даже когда величина уменьшения или скорость уменьшения целевой движущей силы является большой, быстрое уменьшение частоты вращения двигателя 11 может быть подавлено. В результате ощущение дискомфорта, воспринимаемое водителем, такое как внезапное ощущение дискомфорта, может быть смягчено. Кроме того, в течение времени t4-t6 на графике фиг. 11 (g), скорость увеличения (или скорость уменьшения) частоты вращения двигателя 11 становится больше, чем те, которые обозначены пунктирными линиями на фигуре в отношении ощущения ускорения (ощущения замедления) транспортного средства; следовательно, нарастание или убывание звука двигателя и изменение показаний тахометра двигателя могут реагировать на ощущение ускорения или замедления транспортного средства. Другими словами, водитель может чувствовать изменение звука двигателя и индикацию тахометра двигателя в ответ на работу акселератора без ощущения дискомфорта. Кроме того, когда скорость увеличения (или скорость уменьшения) частоты вращения двигателя 11 делается равной предварительно определенному значению или более с использованием нижнего предела скорости увеличения частоты вращения двигателя, нарастание или убывание звука двигателя и изменение индикации тахометра двигателя может лучше реагировать на ощущение ускорения или замедления транспортного средства.

[0082]

Согласно способу управления и устройству управления для гибридного транспортного средства по настоящему варианту осуществления скорость изменения частоты вращения двигателя 11 устанавливается равной значению, коррелирующему со скоростью достижения псевдо-движущей силой целевой движущей силы; следовательно, даже когда происходит задержка в частоте вращения двигателя, частота вращения становится частотой, соответствующей изменению целевой движущей силы. Таким образом, водитель может чувствовать изменение звука двигателя и индикацию тахометра двигателя в ответ на работу акселератора без ощущения дискомфорта.

[0083]

Согласно способу управления и устройству управления для гибридного транспортного средства по настоящему варианту осуществления скорость изменения частоты вращения двигателя, когда запрос на увеличение выработки мощности выдается в двигатель по истечении предварительно определенного времени, задается меньшей, чем скорость изменения частоты вращения двигателя в течение периода, в котором частота вращения достигает частоты вращения на основе вычисленной оценочной траектории от частоты вращения в состоянии полного внутреннего сгорания двигателя, когда запрос на увеличение выработки мощности выдается в двигатель до истечения предварительно определенного времени; следовательно, быстрое увеличение частоты вращения двигателя после полного внутреннего сгорания может быть подавлено, и водитель может чувствовать изменение звука двигателя и индикацию тахометра двигателя в ответ на работу акселератора без ощущения дискомфорта.

[0084]

Согласно способу управления и устройству управления для гибридного транспортного средства по настоящему варианту осуществления, когда запрос на увеличение выработки мощности выдается в двигатель по истечении предварительно определенного времени, скорость изменения частоты вращения двигателя уменьшается по мере уменьшения скорости движения транспортного средства; следовательно, при увеличении частоты вращения двигателя, отличном от случая ускорения, тишина может быть достигнута посредством медленного и осторожного увеличения частоты вращения при низкой скорости транспортного средства, при которой звук особенно заметен. Кроме того, при высокой скорости транспортного средства влияние на внезапное ощущение дискомфорта и другие неприятные ощущения в отношении изменения частоты вращения является небольшим, и изменение частоты вращения двигателя может быть быстро получено для достижения величины выработки мощности, нагрева воздуха, прогрева катализатора и тому подобного.

[0085]

Согласно способу управления и устройству управления для гибридного транспортного средства по настоящему варианту осуществления, по истечении предварительно определенного времени, частота вращения двигателя 11 управляется на основе предварительно определенной постоянной скорости изменения частоты вращения двигателя, и частота вращения двигателя 11, следовательно, может быть определена так, что ускорение или замедление транспортного средства переводится в устойчивое состояние. Таким образом, водитель может чувствовать изменение звука двигателя и индикацию тахометра двигателя в ответ на работу акселератора без ощущения дискомфорта.

Описание ссылочных позиций

[0086]

1 - Гибридное транспортное средство

11 - Двигатель

111 - Выходной вал

112 - Мультипликатор

12 - Генератор

121 - Вращающийся вал

13 - Электродвигатель

131 - Вращающийся вал

132 - Редуктор

14 - Аккумулятор

141 - Первый инвертор

142 - Второй инвертор

15 - Ведущее колесо

16 - Ведущая ось

17 - Дифференциал

171 - Входной вал зубчатого колеса

20 - Контроллер транспортного средства

21 - Контроллер двигателя

22 - Контроллер генератора

23 - Контроллер аккумулятора

24 - Контроллер электродвигателя

25 - Датчик акселератора

26 - Датчик скорости транспортного средства

27 - Датчик переключателя рычага переключения передач/датчик переключателя режима движения

1. Способ управления двигателем гибридного транспортного средства, содержащего электродвигатель, который приводит транспортное средство в движение, генератор, который подает питание на электродвигатель, и двигатель, который приводит в движение генератор, причем способ управления содержит этапы, на которых:

сохраняют момент времени, в который величина или коэффициент изменения целевой движущей силы для транспортного средства становится предварительно определенным порогом или более;

вычисляют оценочную траекторию частоты вращения двигателя в соответствии с величиной или коэффициентом изменения целевой движущей силы; а также,

когда запрос на изменение выработки мощности выдается в двигатель в другой момент времени, отличный от упомянутого момента времени, управляют частотой вращения двигателя на основе вычисленной оценочной траектории.

2. Способ управления двигателем гибридного транспортного средства по п. 1, в котором, когда во время остановки двигателя выдается запрос на увеличение выработки мощности, частотой вращения двигателя управляют на основе вычисленной оценочной траектории после того, как двигатель достигает состояния полного внутреннего сгорания.

3. Способ управления двигателем гибридного транспортного средства по п. 2, в котором, когда частотой вращения двигателя управляют на основании вычисленной оценочной траектории после того, как двигатель достигает состояния полного внутреннего сгорания, скорость изменения частоты вращения в течение периода, в котором частота вращения достигает частоты вращения, основанной на вычисленной оценочной траектории из частоты вращения в состоянии полного внутреннего сгорания, ограничена до предварительно определенного значения или меньше.

4. Способ управления двигателем гибридного транспортного средства по любому из пп. 1-3, в котором

оценочную траекторию вычисляют на основе скорости изменения частоты вращения двигателя в соответствии с величиной или коэффициентом изменения целевой движущей силы с момента времени, в который величина или коэффициент изменения целевой движущей силы становится предварительно определенным порогом или более, пока не истечет предварительно определенное время, и

по истечении предварительно определенного времени частоту вращения двигателя вычисляют на основе предварительно определенной постоянной скорости изменения частоты вращения двигателя.

5. Способ управления двигателем гибридного транспортного средства по п. 4, в котором скорость изменения частоты вращения двигателя, когда запрос на увеличение выработки мощности выдается в двигатель по истечении предварительно определенного времени, задают меньшей, чем скорость изменения частоты вращения двигателя в течение периода, в котором частота вращения достигает частоты вращения на основе вычисленной оценочной траектории из частоты вращения в состоянии полного внутреннего сгорания двигателя, когда запрос на увеличение выработки мощности выдается в двигатель до истечения предварительно определенного времени.

6. Способ управления двигателем гибридного транспортного средства по любому из пп. 1-5, в котором, когда запрос на увеличение выработки мощности выдается в двигатель по истечении предварительно определенного времени, вычисляют скорость изменения частоты вращения двигателя так, чтобы она уменьшалась по мере уменьшения скорости движения транспортного средства.

7. Способ управления двигателем гибридного транспортного средства по любому из пп. 1-6, в котором, когда оценочную траекторию вычисляют в соответствии с величиной или коэффициентом изменения целевой движущей силы, скорость изменения оценочной траектории вычисляют так, чтобы она увеличивалась по мере увеличения величины или коэффициента изменения целевой движущей силы.

8. Способ управления двигателем гибридного транспортного средства по любому из пп. 1-7, в котором, когда оценочную траекторию вычисляют в соответствии с величиной или коэффициентом изменения целевой движущей силы, оценочную траекторию вычисляют в соответствии с псевдодвижущей силой, полученной посредством воздействия на целевую движущую силу процесса запаздывания первого порядка.

9. Способ управления двигателем гибридного транспортного средства по п. 8, в котором скорость изменения частоты вращения двигателя в оценочной траектории устанавливают равной значению, коррелирующему со скоростью достижения движущей силы, подвергаемой процессу запаздывания первого порядка, для целевой движущей силы.

10. Устройство управления двигателем гибридного транспортного средства, содержащего электродвигатель, который приводит транспортное средство в движение, генератор, который подает питание на электродвигатель, и двигатель, который приводит в движение генератор, причем устройство управления используется для транспортного средства и выполнено с возможностью:

сохранения момента времени, в который величина или коэффициент изменения целевой движущей силы для транспортного средства становится предварительно определенным порогом или более;

вычисления оценочной траектории частоты вращения двигателя в соответствии с величиной или коэффициентом изменения целевой движущей силы; а также,

когда запрос на изменение выработки мощности выдается в двигатель в другой момент времени, отличный от упомянутого момента времени, управления частотой вращения двигателя на основе вычисленной оценочной траектории.



 

Похожие патенты:

Изобретение относится к круиз-контролю. Система круиз-контроля транспортного средства содержит контроллер для определения скорости транспортного средства и подачи команды крутящего момента в ответ на выходные данные прогнозирующей программы круиз-контроля на основе адаптивной нелинейной модели.

Изобретение относится к силовым установкам. В способе управления силовой установкой, включающей в себя двигатель внутреннего сгорания и соединенный с ним первый электродвигатель, выполняют ограничение крутящего момента в течение периода, в котором двигатель внутреннего сгорания переключается из режима без сгорания в режим сгорания, и скорость вращения двигателя внутреннего сгорания уменьшается до скорости вращения в пределах предварительно определенного диапазона скоростей вращения посредством первого электродвигателя.

Изобретение относится к способу и устройству для автоматизированного управления сменой полосы. Способ автоматизированного управления сменой полосы содержит этапы, на которых обнаруживают впередиидущее транспортное средство, определяют, удовлетворено или нет предварительно заданное условие, на основе взаимосвязи между эксплуатируемым транспортным средством и впередиидущим транспортным средством и выполняют автоматическую смену полосы посредством эксплуатируемого транспортного средства через автоматизированное управление после истечения первого предварительно заданного времени.

Изобретение относится к гибридному транспортному средству. В способе управления двигателем гибридного транспортного средства вычисляют целевую движущую силу для транспортного средства и управляют скоростью вращения двигателя в соответствии с псевдодвижущей силой и фиксированной псевдодвижущей силой.

Изобретение относится к транспортным средствам. В способе управления электроприводом транспортного средства, когда приводное усилие второго электродвигателя увеличивается в состоянии, при котором двигатель внутреннего сгорания остановлен, ограничивают приводное усилие второго электродвигателя, используя подаваемую аккумуляторной батареей электрическую мощность, более низким уровнем, чем максимальное приводное усилие, определяемое по электрической мощности, которую аккумуляторная батарея способна подавать для привода снабженного электроприводом транспортного средства.

Изобретение относится к транспортным средствам. В способе управления температурой катализатора транспортного средства выполняют управление повышением температуры каталитического нейтрализатора, которое включает прекращение подачи топлива в по меньшей мере один из цилиндров и подачу топлива в другие цилиндры, отличные от указанного по меньшей мере одного цилиндра.

Настоящее изобретение относится к способу изучения характеристик передвижения и устройству помощи при передвижении транспортного средства. Согласно способу изучения характеристик передвижения и устройству помощи при передвижении согласно настоящему изобретению в транспортном средстве, способном переключать ручное вождение водителем и автономное вождение, непрерывность характеристик вождения определяется на основе данных передвижения во время ручного вождения водителем, а также время начала и время окончания целевых данных для изучения, являющихся целью изучения характеристик вождения данных передвижения, устанавливаются посредством использования результата определения непрерывности.

Изобретение относится к способу управления парковкой и оборудованию управления парковкой. Способ управления парковкой содержит этапы на которых выполняют управление парковкой для перемещения транспортного средства в целевое положение парковки на основе команды операции.

Группа изобретений относится к устройству для управления указателем поворота. Устройство управления указателем поворота содержит процессор, выполненный с возможностью управления временем мигания указателя поворота, и определения, установлена ли функция автоматизированной или автономной смены полосы движения.

Изобретение относится к транспортным средствам. Система управления скоростью автомобиля включает систему круиз-контроля и водительский интерфейс ввода.

Изобретение относится к силовым установкам. В способе управления силовой установкой, включающей в себя двигатель внутреннего сгорания и соединенный с ним первый электродвигатель, выполняют ограничение крутящего момента в течение периода, в котором двигатель внутреннего сгорания переключается из режима без сгорания в режим сгорания, и скорость вращения двигателя внутреннего сгорания уменьшается до скорости вращения в пределах предварительно определенного диапазона скоростей вращения посредством первого электродвигателя.
Наверх