Способ упрочнения 3d-печатных конструкций

Изобретение относится к области постобработки при 3D-печати методом FDM (англ. fused deposition modeling - моделирование методом послойного наплавления) и позволяет повысить прочность напечатанных конструкций и понизить анизотропию механических свойств. Описан способ изготовления 3D-печатных конструкций с последующей вакуумной пропиткой, заключающийся в формировании изделия путем трехмерной послойной печати, при которой для изготовления каждого слоя детали термопластичный материал нагревают в печатающей головке до полужидкого состояния и выдавливают в виде нити через сопло с отверстием малого диаметра, осаждая на поверхности рабочего стола для первого слоя или на предыдущем слое для последующих слоев до тех пор, пока изделие не будет построено полностью, где после завершения формирования изделие помещают в вакуумную камеру в эпоксидный компаунд на основе смолы ЭД-20, откачивают воздух из камеры, выдерживают до полного завершения процесса выделения воздушных пузырей, далее возвращают воздух в камеру, в результате чего процесс пропитки детали компаундом завершен. Технический результат - повышение прочности 3D-печатных деталей. 2 табл., 1 ил.

 

Изобретение относится к области постобработки в аддитивных технологиях, а именно технологии 3D-печати методом FDM (англ. fused deposition modeling – моделирование методом послойного наплавления).

Известен способ производства изделий из композитных материалов методом 3D-печати (патент РФ № 267138, МПК B29C 64/118, B29C 64/20, B 33 Y 10/00, B 33 Y 30/00, 2017), включающий изготовление композитного волокна (углеродное, стеклянно, арамидное и др. волокно, пропитанное термореактивным связующим), подачу его в экструдер вместе с термопластичным материалом, соединение их между собой путем расплавления нагретым экструдером, формование слоя изделия из получившейся смеси термопластичного материала и композитного волокна путем движения экструдера по запрограммированной траектории, обрезку композитного волокна и переход к следующему слою печати без него, затем возобновление экструдирования в новом слое волокна и термопластичного материала совместно. В результате в структуре напечатанного изделия вдоль направления печати присутствуют непрерывные волокна, способствующие упрочнению детали в данном направлении. Недостатком данного способа является низкая прочность изделий поперек направления печати и высокая анизотропия свойств вдоль и поперек направления печати.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ формирования изделий путем трехмерной послойной печати с воздействием СВЧ электромагнитного поля и ультразвука (патент РФ № 2676989 B29C 64/118, B29C 64/30, B 33 Y 10/00, 2017). Способ включает в себя операции нагрева полимерной нити и ее выдавливания из экструдера на подложку с формированием слоя необходимой формы при одновременном воздействии СВЧ электромагнитного поля частотой 2450 МГц удельной мощностью 17-18 Вт/см3, аналогичного нанесения последующих слоев в соответствии с запрограммированной формой изделия, совмещенную обработку в течение 2-3 минут готового изделия СВЧ электромагнитным полем и ультразвуком, частоту которых выбирают с учетом толщины изделия и его свойств. Результат заявляемого решения состоит в повышении однородности структуры трехмерного изделия, увеличении количества межмолекулярных связей между отдельными агломератами, рядами агломератов и слоями, что в конечном итоге приводит к повышению прочностных характеристик напечатанного изделия.

Недостатком известного способа является необходимость модернизации 3D-принтера, что усложняет его конструкцию и удорожает, а также сложность подбора необходимой мощности СВЧ-излучения для достижения технического результата (повышения однородности структуры трехмерного изделия, увеличения количества межмолекулярных связей между отдельными агломератам и, как следствие, увеличения прочности изделия).

Технической задачей предлагаемого изобретения является увеличение прочности 3D-печатного изделия и снижение анизотропии механических свойств без модернизации конструкции принтера и с малыми материальными затратами на используемое оборудование и материалы.

Технический результат достигается тем, что в способе упрочнения 3D-печатных конструкций, заключающемся в том, что изделие формируют путем трехмерной послойной печати, при которой для изготовления каждого слоя детали термопластичный материал нагревают в печатающей головке до полужидкого состояния и выдавливают в виде нити через сопло с отверстием малого диаметра, осаждая на поверхности рабочего стола для первого слоя или на предыдущем слое для последующих слоев до тех пор, пока изделие не будет построено полностью, согласно изобретению, после завершения формирования его помещают в вакуумную камеру в среду компаунда для пропитки.

Изобретение поясняется чертежом, на котором представлена принципиальная схема вакуумной системы для пропитки 3D-печатных конструкций.

Установка для упрочнения 3D-печатных конструкций содержит вакуумную камеру 1, прозрачную крышку 2, манометр 3, полимерный компаунд 4, пропитываемую деталь 5, клапан выпускной 6, клапан запорный 7 и вакуумный насос 8.

Способ пропитки осуществляется следующим образом.

Напечатанную на 3D-принтере по технологии FDM деталь 5 помещают в вакуумную камеру 1 в среду подготовленного (смешанного в рекомендуемых пропорциях и предварительно продегазированного) полимерного компаунда 4 с достаточным для проведения пропитки временем жизни. Камера закрывается прозрачной крышкой 2. Далее вакуумным насосом 8 осуществляют откачку воздуха из камеры при закрытом внешнем выпускном клапане 6. При откачивании воздуха из камеры 1 в стакане с полимерным компаундом 4 происходит активное выделение воздушных пузырей, выходящих из внутренних полостей напечатанной детали 5. Когда активная фаза выделения пузырей прекращается (фиксируется наблюдателем через прозрачную крышку 1), процесс откачивания воздуха останавливают путем перекрывания запорного клапана 7. Далее деталь 5 выдерживают при созданном разряжении в течение нескольких минут до полного завершения процесса выделения воздушных пузырей. По окончании данного шага воздух в камеру 1 возвращают путем открытия выпускного клапана 6. При подаче давления в камеру 1 полимерный компаунд 4 устремляется внутрь детали 5 через зазоры между слоями пластика в полости, внутри которых за счет откачки на предыдущем этапе воздуха создаются зоны пониженного давления. Таким образом, полимерный компаунд оказывается внутри 3D-печатной конструкции. Далее деталь извлекают из среды все еще жидкого компаунда и отверждают согласно рекомендуемому режиму для пропитывающего компаунда.

Повышение прочности 3D-печатных деталей с помощью вакуумной пропитки можно достичь при использовании в качестве пропитывающих составов жидких компаундов на основе эпоксидных, полиимидных, полиэфирных и других низкомолекулярных смол, общие требования к которым состоят в достаточном для проведения процесса пропитки времени жизни (не менее 10 мин) и отверждаемых при температурных режимах, не приводящих к деструкции пластиков, применяемых для 3D-печати. Материалом для 3D-печати пропитываемой детали может служить любой применяемый для технологии FDM-печати термопластичный пластик. Рисунок заполнения детали при 3D-печати может быть любым, процент заполнения должен быть ниже 100 %.

Пример. Проводилась пропитка образцов с различным процентом заполнения (20, 33, 50 %) и различным направлением укладки слоев в процессе печати (вдоль и поперек оси образцов). Заполнение выполнялось в виде простой сетки с углом в перекрестьях 90о. Образцы были изготовлены из PLA пластика (полилактид), пропитка осуществлялась в компаунде на основе эпоксидной смолы ЭД-20 с отвердителем ПЭПА. Пропитанные образцы были выдержаны при комнатной температуре до полного затвердевания в течение 24 ч. Для сравнения были изготовлены образцы с аналогичной геометрией, но без выполнения пропитки. Далее образцы были подвергнуты испытаниям на растяжение (результаты испытаний в таблице 1) и ударную вязкость (результаты испытаний в таблице 2). Для всех рассмотренных вариантов геометрии пропитанные образцы оказывались прочнее непропитанных, прирост уровня свойств составил от 1,5 до 3,5 раз. Также значительно снизилась анизотропия свойств напечатанного изделия: до пропитки при заполнении 33% прочность вдоль слоев составляла 10 МПа, поперек слоев – 3 МПа (более чем в три раза меньше), после пропитки прочность вдоль слоев составляла уже 11 МПа, поперек слоев – 11,7 МПа (значения близки). Похожий характер наблюдается и для ударной вязкости, а также при других процентах заполнения.

Таблица 1. Результаты испытаний образцов на растяжение, МПа

Направление укладки слоев в процессе 3D-печати Способ подготовки образца Процент заполнения при 3D-печати
20% 33% 50%
Вдоль оси
образца
Без пропитки 5,5 10,0 12,3
С пропиткой 10,3 11,0 14,7
Поперек оси образца Без пропитки 1,0 3,0 6,0
С пропиткой 7,8 11,7 8,9

Таблица 2. Результаты испытаний образцов на ударную вязкость, кДж/м2

Направление укладки слоев в процессе 3D-печати Способ подготовки образца Процент заполнения при 3D-печати
20% 33% 50%
Вдоль оси
образца
Без пропитки 1,02 1,22 1,43
С пропиткой 1,74 1,84 2,25
Поперек оси образца Без пропитки 0,90 1,00 1,20
С пропиткой 2,50 1,70 1,40

Как видно из таблиц, применение заявленного способа позволяет повысить прочность и ударную вязкость 3D-печатных конструкций, изготовленных методом FDM, а также снизить анизотропию механических свойств детали в направлениях вдоль и поперек слоев печати.


Способ упрочнения 3D-печатных конструкций с последующей вакуумной пропиткой, заключающийся в формировании изделия путем трехмерной послойной печати, при которой для изготовления каждого слоя детали термопластичный материал нагревают в печатающей головке до полужидкого состояния и выдавливают в виде нити через сопло с отверстием малого диаметра, осаждая на поверхности рабочего стола для первого слоя или на предыдущем слое для последующих слоев до тех пор, пока изделие не будет построено полностью, отличающийся тем, что после завершения формирования изделие помещают в вакуумную камеру в эпоксидный компаунд на основе смолы ЭД-20, откачивают воздух из камеры, выдерживают до полного завершения процесса выделения воздушных пузырей, далее возвращают воздух в камеру, в результате чего процесс пропитки детали компаундом завершен.



 

Похожие патенты:

Изобретение относится к твердооксидным топливным элементам на основе планарных мембранно-электродных блоков. В блоках топливных элементов металлические биполярные интерконнекторы заменены напечатанными на 3D-принтере керамическими пластинами, которые образуют газораспределительные каналы, формируют каркас батареи и обеспечивают возможность монополярной коммутации мембранно-электродных блоков тонкими металлическими листами с токопроводящими защитными покрытиями.

Изобретение относится к области аддитивных технологий, в частности, к устройству и способу для изготовления трехмерных изделий из порошка. Устройство для изготовления трехмерных изделий содержит носитель, выполненный с возможностью приема множества слоев порошка исходного материала, блок облучения, выполненный с возможностью направления луча излучения в заданные места верхнего слоя порошка для его отверждения в заданных местах, технологическую камеру и опорную конструкцию, расположенную вне технологической камеры и поддерживающую блок облучения.

Изобретение относится к области полимерных материалов для упаковки и касается высокоусадочного, высокопрочного упаковочного изделия, демонстрирующего направленный разрыв. Упаковочное изделие содержит термоусадочную пленку, имеющую общую свободную усадку при 85°С по меньшей мере 90%.

Экструдер // 2750158
Изобретение относится к оборудованию для производства экструдированных продуктов и может быть использовано в пищевой и перерабатывающих отраслях агропромышленного комплекса. Описан экструдер для пищевой и агропромышленной отрасли, включающий привод, рабочую камеру с расположенным внутри нее комбинированным шнеком, матрицу, загрузочный бункер и разгрузочную камеру для выхода экструдата, при этом расположенный внутри рабочей камеры комбинированный шнек состоит из шести зон: зоны загрузки и транспортирования, зоны предварительного уплотнения, зоны вакуумирования, зоны ввода жидких компонентов, зоны гомогенизации и зоны стабилизации давления; в первой зоне загрузки и транспортирования диаметры вала и витков шнека, а также шаг витков шнека постоянны, в конце этой зоны виток шнека имеет разрыв, на месте которого на валу шнека выполнена кольцевая дорожка, во второй зоне предварительного уплотнения вал шнека имеет постоянный, но больший, чем в зоне загрузки и транспортирования, диаметр, и толщина витков увеличена, в конце второй зоны виток шнека имеет разрыв, в третьей зоне вакуумирования диаметр вала шнека выполнен конусным (постоянно увеличивающимся), а в корпусе в начале этой зоны имеется патрубок для соединения с вакуум-линией, в четвертой зоне ввода жидких компонентов диаметр вала и шаг витков постоянны и, начиная с этой зоны и до конца шнека, в витках выполнены прорези, а в корпусе в начале этой зоны имеется патрубок для ввода жидких компонентов, в пятой зоне гомогенизации диаметр вала шнека выполнен конусным (постоянно увеличивающимся), в шестой зоне стабилизации давления диаметр вала постоянен, и в корпусе по длине этой зоны с шагом, равным расстоянию между разрывами по оси кольцевых дорожек, установлены регулировочные болты, разгрузочная камера для выхода экструдата снабжена устройством для регулирования величины выходного зазора с помощью подвижной в горизонтальной плоскости матрицы.

Изобретение относится к способу экструдирования и этикетирования упаковочной тубы. Техническим результатом является уменьшение отклонения диаметра тубы от заданного и повышение точности ее изготовления.

Изобретение относится к области полимерных материалов и касается многослойных несшитых термоусадочных упаковочных пленок. Пленка содержит: наружный герметизирующий слой, наружный полиэфирный слой, внутренний газобарьерный слой, первый сердцевинный слой, расположенный между герметизирующим слоем и газобарьерным слоем, второй сердцевинный слой, расположенный между газобарьерным слоем (с) и наружным полиэфирным слоем, и без внутреннего слоя, содержащего большую долю полиамида(-ов) или полиэфира(-ов).

Изобретение относится к устройству для калибровки системы облучения установки для изготовления трехмерных изделий и способу калибровки системы облучения для изготовления трехмерных изделий. Устройство (10) для калибровки системы (12) облучения установки (14) для изготовления трехмерных изделий, в котором система (12) облучения содержит первый блок (16) облучения для селективного излучения первого луча (18) облучения вдоль первой рабочей оси (20) на плоскость (22) облучения и второй блок (24) облучения для селективного излучения второго луча (26) облучения вдоль второй рабочей оси (28) на плоскость (22) облучения.

Изобретение относится к способам дискретного измерения и контроля в режиме онлайн при получении формы. Технический результат заключается в управлении процессом получения формы.

Изобретение относится к вычислительной технике. Технический результат заключается в сокращении времени цикла при создании копий анатомических структур.

Изобретение относится к способу изготовления беговой дорожки шины. Техническим результатом является уменьшение накапливания электрического заряда на транспортных средствах с помощью шин.

Группа изобретений относится к аддитивному производству, а в частности, относится к экструдеру для экструзии неоднородной керамической суспензии. Способ экструзии неоднородного суспензионного материала из экструдера включает перемешивание неоднородной суспензии во внутреннем пространстве резервуара экструдера, повышение давления неоднородной суспензии, расположенной во внутреннем пространстве резервуара экструдера и удаление неоднородной суспензии, содержащейся во внутреннем пространстве резервуара, через сопло, прикрепленное к резервуару и сообщающееся по текучей среде с неоднородной суспензией во внутреннем пространстве резервуара. Причем сопло образует первое отверстие, расположенное во внутреннем пространстве резервуара, образует второе отверстие, расположенное снаружи резервуара, и образует канал, который проходит от первого отверстия через сопло ко второму отверстию с заданием пути движения потока, который проходит через сопло от первого отверстия через канал ко второму отверстию. Сопло проходит через стенку резервуара во внутреннее пространство резервуара таким образом, что первое отверстие расположено на расстоянии от стенки. Техническим результатом является повышение эффективности экструзии керамической суспензии, содержащей суспензионный материал высокой плотности, снижение забивания сопла суспензионным материалом, содержащимся в суспензии, обеспечение равномерного потока неоднородного суспензионного материала. 2 н. и 18 з.п. ф-лы, 5 ил.
Наверх