Способ использования акустико-эмиссионного сбора данных для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций

Использование: для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций посредством акустико-эмиссионного сбора данных. Сущность изобретения заключается в том, что на поверхности конструкции прикрепляют по меньшей мере два датчика, улавливающих акустические сигналы, получаемые от динамически развивающихся дефектов в конструкции, а также по меньше мере один датчик виброперемещения, по меньше мере один датчик наклона конструкции и по меньшей мере один датчик линейного перемещения конструкции; полученные акустические сигналы от датчиков, а также сигналы от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения, полученные на предыдущей стадии, сохраняют; по разнице времени приема сходных акустических сигналов от датчиков определяют местонахождение дефекта, а по характеру акустического сигнала определяют тип дефекта; сохраненные акустические сигналы разделяют по меньшей мере на четыре группы по их источнику: пассивный источник, характеризующийся монотонным уменьшением активности, амплитуды и/или энергии сигнала во времени и насыщением параметров акустической эмиссии, активный источник, характеризующийся квазипостоянными значениями активности, амплитуды и/или энергии во времени и линейной зависимостью от времени параметров акустической эмиссии, критически активный источник, характеризующийся постоянным приростом значений активности, амплитуды и/или энергии во времени и отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии, закритически активный источник, характеризующийся дальнейшим существенным увеличением значений активности, амплитуды и/или энергии во времени и существенным отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии, сигналы от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения считают критическими или закритическими, если хотя бы один из них выходит за заранее установленные рамки либо выход за установленные рамки имеет высокое значение. Технический результат: обеспечение возможности предсказывать наступление критических событий, связанных с внутренними неисправностями строительных или технологических конструкций.

 

Изобретение относится к области техники, а более конкретно - к способу использования акустико-эмиссионного сбора данных для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций.

Настоящее изобретение может найти применение при создании, эксплуатации, управлении и мониторинге строительных и технологических конструкций различного назначения, включая конструкции, используемые в промышленности, энергетике, машиностроении, коммунальном хозяйстве и других отраслях.

В основу настоящего изобретения положена задача создания такого способа использования акустико-эмиссионного сбора данных для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций, который позволил бы предсказывать наступление критических событий, в первую очередь, связанных с внутренними неисправностями и сбоями, либо критическим ростом каких-либо значений показателей, описывающих строительные или технологические конструкции и связанных с появлением сигналов акустической эмиссии от внутренних дефектов, а также от других датчиков, учитывающих наклон конструкции, ее линейное перемещение и другие параметры.

Согласно ГОСТ 27655-88, Акустическая эмиссия (Эмиссия волн напряжений, Звуковая эмиссия, Ультразвуковая эмиссия, Акустическое излучение) - испускание объектом контроля (испытаний) акустических волн.

Наиболее близким к данному изобретению является патент RU 2371691 C1 СПОСОБ МОНИТОРИНГА МАШИН И СООРУЖЕНИЙ (2008.04.22), включающий измерение посредством, по крайней мере, одного датчика параметров вибрации объекта, определение и анализ значений параметров вибрации объекта мониторинга в месте установки датчика, отличающийся тем, что используют датчик, синфазно измеряющий три ортогональных проекции вектора ускорения, определяют вектор деформации объекта мониторинга в месте установки датчика, накапливают массив векторных величин деформации, отображают на мониторе, по крайней мере, для одной частоты вибрации годограф вектора деформации относительно системы координат, связанной с объектом мониторинга, и определяют наличие анизотропии в деформациях элемента объекта мониторинга в месте установки датчика.

Однако рассмотренный прототип имеет следующие существенные недостатки:

- не является универсальным для различных типов строительных и технологических конструкций;

- зависит от процессов вибрации и не учитывает появление акустической эмиссии при возникновении внутренних дефектов строительных и технологических конструкций;

- не позволяет классифицировать процессы наступления критических событий по интенсивности и характеру сигналов;

- не предназначен для прогнозирования наступления событий, связанных с образованием дефектов, в будущем времени.

Задачи изобретения решены и недостатки прототипа устранены в реализованном согласно настоящему изобретению способе комплексного мониторинга и прогнозирования состояния строительных и технологических конструкций, предусматривающий следующие стадии:

1) на поверхности конструкции прикрепляют по меньшей мере два датчика, улавливающих акустические сигналы, получаемые от динамически развивающихся дефектов в конструкции, а также по меньше мере один датчик виброперемещения, по меньше мере один датчик наклона конструкции и по меньшей мере один датчик линейного перемещения конструкции;

2) полученные акустические сигналы от датчиков, а также сигналы от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения, полученные на предыдущей стадии, сохраняют;

3) по разнице времени приема сходных акустических сигналов от датчиков определяют местонахождение дефекта, а по характеру акустического сигнала определяют тип дефекта;

и отличающийся тем, что сохраненные акустические сигналы разделяют по меньшей мере на четыре группы по их источнику:

- пассивный источник, характеризующийся монотонным уменьшением активности, амплитуды и/или энергии сигнала во времени и насыщением параметров акустической эмиссии;

- активный источник, характеризующийся квазипостоянными значениями активности, амплитуды и/или энергии во времени и линейной зависимостью от времени параметров акустической эмиссии;

- критически активный источник, характеризующийся постоянным приростом значений активности, амплитуды и/или энергии во времени и отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии;

- закритически активный источник, характеризующийся дальнейшим существенным увеличением значений активности, амплитуды и/или энергии во времени и существенным отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии;

- сигналы от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения считают критическими или закритическими, если хотя бы один из них выходит за заранее установленные рамки, либо выход за установленные рамки имеет высокое значение;

4) полученные данные от акустических датчиков, датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения используются для мониторинга конструкций, причем для первых двух групп источников устанавливается режим наблюдения, а для двух следующих - режим оповещения о появлении и местоположении критических и/или закритически активных источников, отличающийся тем, что контролируется переход первых двух групп источников в последующие две группы, а также появление критических или закритических сигналов от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения.

5) данные, полученные на предыдущей стадии используют для прогнозирования состояния строительных и технологических конструкций в будущем времени, определяя скорость и предположительное время развития дефектов.

За счет реализации заявленного авторами способа достигаются следующие технические результаты:

- он является универсальным для различных типов строительных и технологических конструкций;

- не зависит от процессов вибрации и учитывает появление акустической эмиссии при возникновении внутренних дефектов строительных и технологических конструкций;

- позволяет классифицировать процессы наступления критических событий по интенсивности и характеру сигналов;

- предназначен для прогнозирования наступления событий, связанных с образованием дефектов, в будущем времени.

Настоящее изобретение будет раскрыто в нижеследующем описании мониторинга и предсказания состояния водонапорной башни, имеющей емкость для хранения воды и электромеханический турбинный насос для ее нагнетания в емкость.

На поверхности водонапорной башни прикрепляют по меньшей мере два датчика, улавливающих сигналы акустической эмиссии, получаемые от динамически развивающихся дефектов как в строительных конструкциях водонапорной башни, так и в насосе, также по меньше мере один датчик виброперемещения, по меньше мере один датчик наклона башни и по меньшей мере один датчик ее линейного перемещения конструкции. Сигналы от датчиков, полученные на первой стадии, сохраняют.

По разнице времени приема сходных акустических сигналов от датчиков определяют местонахождение дефекта, а по характеру акустического сигнала определяют тип дефекта;

С течением времени фиксируют пассивный источник, характеризующийся монотонным уменьшением активности, амплитуды и/или энергии сигнала во времени и насыщением параметров акустической эмиссии, связанный с протечкой воды из бака, а также активный источник, характеризующийся квазипостоянными значениями активности, амплитуды и/или энергии во времени и линейной зависимостью от времени параметров акустической эмиссии, связанный с проседанием конструкции бака и образованием трещин в его стенках.

Кроме того, фиксируют - критически активный источник, характеризующийся постоянным приростом значений активности, амплитуды и/или энергии во времени и отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии, связанный с износом подшипников насоса.

В некоторый момент времени фиксируют закритически активный источник, характеризующийся дальнейшим существенным увеличением значений активности, амплитуды и/или энергии во времени и существенным отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии, связанный с разрушением подающего шланга насоса.

Полученные данные используются для мониторинга конструкций, причем для первых двух групп источников устанавливается режим наблюдения, а для двух следующих - режим оповещения о появлении и местоположении критических и/или закритически активных источников, при этом контролируется переход первых двух групп источников в последующие две группы. Так, при разрушении шланга производится немедленное оповещение коммунальных служб.

От датчиков виброперемещения получают информацию о постепенном разрушении опорных конструкций насоса, приводящих к появлению вибрации, о от датчиков наклона - нарастающий во времени уклон конструкций башни и линейное перемещение ее верхней части в одну сторону.

Данные первых трех групп используют для прогнозирования состояния строительных и технологических конструкций в будущем времени, в частности, прогнозируется время текущего ремонта протечки из бака, заделка трещин и смена подшипников. Кроме того, планируется монтаж подпорки стены водонапорной башни в целях предотвращения ее дальнейшего уклона, а также укрепление опорных конструкций насоса и монтаж резиновых шайб с целью уменьшения вибрации.

По сравнению со способами известными авторам, заявляемый способ обладает высокой универсальностью и гибкостью и позволяет достичь лучших результатов, является универсальным для различных типов строительных и технологических конструкций, не зависит от процессов вибрации и учитывает появление акустической эмиссии при возникновении внутренних дефектов строительных и технологических конструкций, позволяет классифицировать процессы наступления критических событий по интенсивности и характеру сигналов, удобен для прогнозирования наступления событий, связанных с образованием дефектов, в будущем времени, а также обеспечивает комплексный учет сигналов от всех датчиков.

Литература

1. Математическая энциклопедия. - М.: Советская энциклопедия. И.М. Виноградов. 1977-1985.

2. М.Г. Сухарев Методы прогнозирования - Серия Прикладная математика в инженерном деле М: 2009.

3. ГОСТ 27655-88 ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР. АКУСТИЧЕСКАЯ ЭМИССИЯ. Термины, определения и обозначения. - УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 28.03.88 №787.

Способ использования акустико-эмиссионного сбора данных для комплексного технического мониторинга и прогнозирования состояния строительных и технологических конструкций, предусматривающий следующие стадии:

1) на поверхности конструкции прикрепляют по меньшей мере два датчика, улавливающих акустические сигналы, получаемые от динамически развивающихся дефектов в конструкции, а также по меньше мере один датчик виброперемещения, по меньше мере один датчик наклона конструкции и по меньшей мере один датчик линейного перемещения конструкции;

2) полученные акустические сигналы от датчиков, а также сигналы от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения, полученные на предыдущей стадии, сохраняют;

3) по разнице времени приема сходных акустических сигналов от датчиков определяют местонахождение дефекта, а по характеру акустического сигнала определяют тип дефекта;

и отличающийся тем, что сохраненные акустические сигналы разделяют по меньшей мере на четыре группы по их источнику:

- пассивный источник, характеризующийся монотонным уменьшением активности, амплитуды и/или энергии сигнала во времени и насыщением параметров акустической эмиссии;

- активный источник, характеризующийся квазипостоянными значениями активности, амплитуды и/или энергии во времени и линейной зависимостью от времени параметров акустической эмиссии;

- критически активный источник, характеризующийся постоянным приростом значений активности, амплитуды и/или энергии во времени и отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии;

- закритически активный источник, характеризующийся дальнейшим существенным увеличением значений активности, амплитуды и/или энергии во времени и существенным отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии;

- сигналы от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения считают критическими или закритическими, если хотя бы один из них выходит за заранее установленные рамки либо выход за установленные рамки имеет высокое значение;

4) полученные данные от акустических датчиков, датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения используются для мониторинга конструкций, причем для первых двух групп источников устанавливается режим наблюдения, а для двух следующих - режим оповещения о появлении и местоположении критических и/или закритически активных источников,

отличающийся тем, что контролируется переход первых двух групп источников в последующие две группы, а также появление критических или закритических сигналов от датчиков виброперемещения, датчиков наклона и датчиков линейного перемещения;

5) данные, полученные на предыдущей стадии, используют для прогнозирования состояния строительных и технологических конструкций в будущем времени, определяя скорость и предположительное время развития дефектов.



 

Похожие патенты:
Использование: для мониторинга и прогнозирования состояния строительных и технологических конструкций посредством акустико-эмиссионного сбора данных. Сущность изобретения заключается в том, что на поверхности конструкции прикрепляют по меньшей мере два датчика, улавливающих сигналы акустической эмиссии, получаемые от динамически развивающихся дефектов в конструкции; акустические сигналы от датчиков, полученные на первой стадии, сохраняют; по разнице времени приема сходных акустических сигналов от датчиков определяют местонахождение дефекта, а по характеру акустического сигнала определяют тип дефекта; сохраненные акустические сигналы разделяют по меньшей мере на четыре группы: пассивный источник, характеризующийся монотонным уменьшением активности, амплитуды и/или энергии сигнала во времени и насыщением параметров акустической эмиссии; активный источник, характеризующийся квазипостоянными значениями активности, амплитуды и/или энергии во времени и линейной зависимостью от времени параметров акустической эмиссии; критически активный источник, характеризующийся постоянным приростом значений активности, амплитуды и/или энергии во времени и отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии; закритически активный источник, характеризующийся дальнейшим существенным увеличением значений активности, амплитуды и/или энергии во времени и существенным отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии; полученные данные используются для мониторинга конструкций, причем для первых двух групп источников устанавливается режим наблюдения, а для двух следующих - режим оповещения о появлении и местоположении критических и/или закритически активных источников, при этом контролируется переход первых двух групп источников в последующие две группы; данные первых трех групп используют для прогнозирования состояния строительных и технологических конструкций в будущем времени.
Использование: для непрерывного или периодического акустико-эмиссионного сбора данных в целях прогнозирования технического состояния объектов. Сущность изобретения заключается в том, что на поверхности и/или внутри объекта, либо в его полости, либо в среде, заполняющей полости, созданной естественно или искусственно, размещают по меньшей мере два датчика, улавливающих непрерывно или периодически сигналы акустической эмиссии, получаемые от динамических процессов в объекте; полученные в первой стадии сигналы от датчиков сохраняют; по разнице времени приема сходных сигналов от датчиков определяют локализацию процесса в объекте, а по характеру сигнала определяют тип процесса и полученные данные также сохраняют; сохраненные данные используют для построения стохастических или детерминированных функций, зависящих от времени и описывающих процессы в объекте с учетом места их локализации; на основе полученных на предыдущей стадии функций определяют тренды развития динамических процессов в объекте, тем самым прогнозируя его техническое состояние в заданный момент или интервал будущего времени.

Изобретение относится к области дефектоскопии и может быть использовано в качестве метода неразрушающего контроля при оценке технического состояния металлоконструкций объектов. Сущность: осуществляют нагружение испытуемого образца в два этапа нагрузкой до его максимальной деформации, с одновременной регистрацией сигналов акустической эмиссии прибором, на первом из которых осуществляют кратковременное обжатие троекратно до максимальной деформации, на втором осуществляют нагружение образца постоянной нагрузкой до максимальной деформации и выдерживают определенное время.
Использование: для акустического мониторинга ходовой части транспортного средства. Сущность изобретения заключается в том, что выполняют получение информации в виде акустического сигнала с ходовой части транспортного средства посредством установленных на ее элементах акустических датчиков, передающих получаемый акустический сигнал в вычислительный модуль, обработку сигнала, получение сведений о состоянии ходовой части, сравнение их с нормативными значениями, выдачу результата, получаемый акустический сигнал разделяют на группы по принципу локализации и относят каждую группу к соответствующему узлу ходовой части, далее обрабатывают сигналы каждой группы в отдельности по индивидуальному алгоритму, получают сведения о характеристиках звукового сигнала и его источнике, о состоянии узлов ходовой части, сравнивают с нормативными значениями для каждого узла, полученными ранее на исправном транспортном средстве, выводят результаты для каждого узла с возможностью вывода информации по каждому элементу узла, при этом в каждой группе сигналов, разделенной по принципу локализации, сигналы распределяют по мощности и частоте, причем сигналы с максимальными значениями мощности, а также сигналы с минимальными и максимальными значениями частоты относят к пороговым, которые затем сравнивают с нормативными значениями для каждого узла, в случаях выхода пороговых значений за диапазоны нормативных, считают, что элемент узла неисправен и выдают сигнал.

Изобретение относится к области неразрушающего контроля прочности оптических волокон из плавленого кварцевого стекла. В заявленном способе контроля прочности оптического волокна в контролируемом объекте создают напряжение и измеряют акустической сигнал, по результатам обработки которого выделяют сигнал акустической эмиссии и оценивают характеристики контролируемого объекта.
Использование: для определения срока безопасной эксплуатации стеклопластиковых трубопроводов. Сущность изобретения заключается в том, что выполняют предварительное изучение объекта контроля - трубопровода, установку на поверхность трубопровода преобразователей акустической эмиссии, проведение контроля плавным ступенчатым нагружением давления на уровне 0,5*Рраб, 0,75*Рраб, 1,0*Рисп и Рисп, где Рраб - разрешенное рабочее давление, Рисп - испытательное давление, вычисление скорости распространения сигналов акустической эмиссии, накопление, обработка и анализ данных, оценка результатов контроля классификацией источников акустической эмиссии на источник I класса - пассивный источник, источник II класса - активный источник, источник III класса - критически активный источник, источник IV класса - катастрофически активный источник.

Использование: для идентификации и классификации источников акустической эмиссии (АЭ) на контролируемых объектах. Сущность изобретения заключается в том, что способ идентификации сигналов АЭ основан на установлении зависимости между численным значением энергии, рассчитанным для компонент вейвлет декомпозиции сигнала АЭ и Фурье-спектра компонент вейвлет декомпозиции и параметром, характеризующим тип разрушения материала, с учетом расстояния от источника до приемника сигнала АЭ.

Использование: для тестирования датчика акустической эмиссии. Сущность изобретения заключается в том, что устройство тестирования датчика акустической эмиссии содержит устройство управления технологическим процессом; датчик акустической эмиссии, связанный с устройством управления технологическим процессом, при этом датчик акустической эмиссии обнаруживает состояние эксплуатационной годности устройства управления технологическим процессом; и пьезоэлектрический эталонный генератор частоты, акустически связанный с датчиком акустической эмиссии для того, чтобы тестировать состояние эксплуатационной годности датчика акустической эмиссии.

Использование: для неразрушающего контроля конструкций с использованием метода акустической эмиссии. Сущность изобретения заключается в том, что в процессе нагружения объекта дополнительно измеряют значение активности акустической эмиссии событий с заданным интервалом времени (0,5-10 с) для каждого канала, при снижении активности ниже минимально заданного значения Amin снижают пороговый уровень по амплитуде в два раза, а при превышении активности заданного значения Аmах пороговый уровень по амплитуде повышают в два раза, после чего строят амплитудное распределение событий от каждого источника, определяют параметры степенной связи амплитуды с частотой ее регистрации по значениям амплитуд, которые превышают максимальный порог срабатывания, достигнутый на протяжении всего испытания на канале, затем проводится аппроксимация полученной степенной зависимости до уровня амплитуды, соответствующей минимально допустимой величине амплитуды акта акустической эмиссии и исходя из полученных значений амплитуд определяют восстановленное число АЭ сигналов (суммарный счет), которые используют для определения потенциальной опасности каждого источника АЭ на объекте.

Использование: для неразрушающего контроля конструкций. Сущность изобретения заключается в том, что многоканальное акустико-эмиссионное устройство состоит из n блоков, каждый из которых содержит четыре измерительных канала, состоящих из последовательно соединенных акустического преобразователя, предварительного усилителя, первого двухпозиционного переключателя, а также аналогового полосового фильтра нижних частот, программируемого усилителя с изменяемым коэффициентом усиления, аналого-цифрового преобразователя, оперативного запоминающего устройства, шины PCI, центрального процессора компьютера, цифрового сигнального процессора, цифроаналогового преобразователя управления усилением, выход которого соединен со вторым входом программируемого усилителя, генератора калибровочных импульсов, цифроаналогового преобразователя порогового значения, выход которого соединен с первым входом сумматора и первым входом двухпозиционного ключа, выход программируемого усилителя соединен с входом детектора, входом аналого-цифрового преобразователя и не инвертирующим входом компаратора, выход детектора соединен со входом интегратора, выход которого соединен со вторым входом сумматора, а его выход соединен со вторым входом двухпозиционного ключа, выход которого соединен с инвертирующим входом компаратора, выход которого соединен со вторым входом устройства управления, цифровой выход аналого-цифрового преобразователя соединен со входом цифрового фильтра, выход которого соединен с цифровой шиной устройства управления, при этом каждый канал дополнительно содержит полосовые фильтры быстрой и медленной моды, выходы которых подключены к последовательно соединенным детектору аналогового сигнала, интегратору аналогового сигнала, программируемому делителю и аналоговому компаратору, при этом первые входы полосовых фильтров соединены со вторым выходом двухпозиционного ключа, вторые входы полосовых фильтров, интеграторов аналогового сигнала, программируемых делителей и выход аналогового компаратора соединены с выходами устройства управления.
Использование: для прогнозирования критической неисправности движущегося узла по акустико-эмиссионным данным. Сущность изобретения заключается в том, что вблизи анализируемых узлов прикрепляют по меньшей мере два датчика, улавливающих сигналы акустической эмиссии, полученные в ходе штатной работы узлов акустические сигналы от датчиков сохраняют и считают эталонными, улавливают акустические сигналы от датчиков при последующей работе движущихся узлов, сравнивают полученные на предыдущей стадии акустические сигналы с эталонными сигналами, по разнице вида акустических сигналов, сравненных на предыдущей стадии, делают вывод об отклонении функционирования движущихся узлов от эталонного, при этом по времени приема сходных акустических сигналов от датчиков определяют местонахождение предполагаемого дефекта в узле, а по характеру акустического сигнала определяют тип предполагаемого дефекта, анализируют изменение во времени разницы акустических сигналов от эталонного, получая скорость изменений, и вычисляют время наступления критической неисправности узла и ее тип, вычисленное время сообщают эксплуатирующему движущиеся узлы, осуществляя профилактику образования дефектов, данные предыдущих этапов используют для прогнозирования состояния данных или аналогичных движущихся узлов в будущем времени. Технический результат: обеспечение возможности предсказывать наступление критических событий, связанных с внутренними неисправностями движущихся узлов.
Наверх