Способ легирования кристаллов селенида цинка хромом

Изобретение относится к области выращивания кристаллов. Способ легирования кристаллов селенида цинка хромом включает смешивание порошков селенида цинка и легирующей добавки и последующее выращивание кристалла из расплава под давлением аргона, при этом хром вводится в исходную загрузку в виде моноселенида хрома CrSe, а выращивание кристалла осуществляют вертикальной зонной плавкой. Изобретение обеспечивает получение кристаллов ZnSe с концентрацией хрома, практически совпадающей с содержанием Cr в исходной загрузке. 2 ил., 1 табл., 3 пр.

 

Изобретение относится к области выращивания кристаллов.

Кристаллы селенида цинка, легированные хромом, применяются для изготовления пассивных модуляторов в резонаторах лазеров ближнего инфракрасного диапазона, а также для изготовления активных элементов таких лазеров.

Известен способ легирования кристаллов селенида цинка хромом [Е. Gavrishuk, V. Ikonnikov, Т. Kotereva, D. Savin, S. Rodin, E. Mozhevitina, R. Avetisov, M. Zykova, I. Avetissov, K. Firsov, S. Kazantsev, I. Kononov, P. Yunin. Growth of high optical quality zinc chalcogenides single crystals doped by Fe and Cr by the solid phase recrystallization technique at barothermal treatment. Journal of Crystal Growth 468 (2017) 655-661]-аналог, в котором на поверхность поликристаллического ZnSe наносится пленка хрома, а собственно легирование производится путем диффузионного отжига, при котором также происходит рекристаллизация ZnSe, приводящая к росту размера зерна поликристаллов. К недостаткам этого способа можно отнести неоднородное распределение легирующей добавки по толщине изделия, характерное для диффузионных методов легирования, а также сложность многостадийного процесса, включающего рост поликристалла, нанесение пленки хрома и собственно диффузионное легирование.

Известен способ легирования кристаллов селенида цинка хромом [Liu Hongzhen, Mei Jingjing, Shi Linlin; Wang Dengkui, Wang Fei, Wang Yunpeng, Zhao Bin, Zhao Dongxu, Zhao Xin. Chromium-doped zinc selenide monocrystal Bridgman growth device and method. Патент CN 104532353 А]-прототип, в котором порошок хрома смешивается с порошком ZnSe, а из полученной смеси выращивают кристалл селенида цинка, легированного хромом. Выращивание проводится из расплава, методом Бриджмена, то есть путем расплавления всего объема загрузки и последующей кристаллизации расплава при перемещении тигля из нагревателя в холодную зону ростовой установки. Процесс осуществляется под давлением аргона. Основной недостаток этого способа обусловлен следующим. При таком методе роста значительная часть селенида цинка расходуется на потери на испарение, так как давление паров ZnSe в точке плавления превышает 1 атм. При температуре плавления ZnSe хром практически не испаряется. Таким образом, концентрация легирующей добавки оказывается выше заданной в загрузке. Точный же прогноз потерь на испарение в таком процессе невозможен, поэтому прецизионная корректировка концентрации хрома в загрузке неосуществима.

Задачей предлагаемого решения является создание способа легирования селенида цинка хромом, в котором концентрация легирующей добавки (Cr) в кристалле практически совпадает с ее концентрацией в исходной загрузке.

Поставленная задача решается в предлагаемом способе, включающем смешивание порошков селенида цинка и легирующей добавки и последующее выращивание кристалла из расплава под давлением аргона, за счет того, что хром вводится в исходную загрузку в виде моноселенида хрома CrSe, а выращивание кристалла проводится вертикальной зонной плавкой.

В таком процессе концентрация хрома в исходной загрузке практически совпадает с его концентрацией в кристалле, что подтверждается данными, приведенными в Таблице, где концентрация Cr в кристалле во всех случаях измерена в середине кристалла (по длине). Концентрация хрома в кристаллах определялась инфракрасной спектроскопией по зависимости коэффициента поглощения на длине волны 1,8 мкм от концентрации Cr в ZnSe.

Достигнутый результат объясняется следующим. Моноселенид хрома, также как и ZnSe, частично испаряется при температуре процесса, причем скорости испарения CrSe и ZnSe сопоставимы, что обеспечивает близкие значения концентраций Cr в исходной загрузке и в кристалле. Применение зонной плавки позволяет снизить эффективный коэффициент распределения хрома в ZnSe, что обеспечивает более однородное распределение легирующей добавки по длине кристалла в сравнении с методом Бриджмена.

Пример 1.

Порошки ZnSe и CrSe смешивают таким образом, чтобы концентрация хрома в загрузке составляла 2,5×1017 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки под давлением аргона. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 2 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 1,8 мкм. Определяют концентрацию хрома по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 2,58×1017 см-3 (Таблица, строка 3).

Пример 2.

Порошки ZnSe и CrSe смешивают таким образом, чтобы концентрация хрома в загрузке составляла 5,0×1018 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки под давлением аргона. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 1 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 1,8 мкм. Определяют концентрацию хрома по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 5,21×1018 см-3 (Таблица, строка 4). На Фиг. 1 показан полученный кристалл ZnSe:Cr, расколотый вдоль оси роста по плоскости спайности (110). На Фиг. 2 показан оптический элемент, изготовленный из этого кристалла.

Пример 3.

Порошки ZnSe и CrSe смешивают таким образом, чтобы концентрация хрома в загрузке составляла 1,0×1019 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки под давлением аргона. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 0,5 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 1,8 мкм. Определяют концентрацию хрома по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 1,19×1019 см-3 (Таблица, строка 4).

Способ легирования кристаллов селенида цинка хромом, включающий смешивание порошков селенида цинка и легирующей добавки и последующее выращивание кристалла из расплава под давлением аргона, отличающийся тем, что хром вводится в исходную загрузку в виде моноселенида хрома CrSe, а выращивание кристалла проводится вертикальной зонной плавкой.



 

Похожие патенты:

Изобретение относится к области лазерной техники. Генератор импульсов ионизации содержит генератор частоты ионизации, источник ионизации лазера, приемник излучения, шесть резисторов, ограничитель мощности излучения, ограничитель сигнала управления, пороговую схему, генератор низкой частоты, четыре повторителя, усилитель, тумблер, измеритель мощности излучения, два формирователя, компаратор, ключ и преобразователь напряжение-частота.

Изобретение относится к области квантовой электроники и лазерной техники, в частности к твердотельным ВКР-лазерам, и может быть применено в нелинейной оптике, аналитической спектроскопии, оптическом приборостроении, медицине, экологии, фотодинамической терапии. Лазер с источником накачки, устройствами юстировки, резонатором с активным элементом, обладающим ВКР эффектом и установленным посредством узла крепления с возможностью обеспечения его вращения относительно оптической оси лазерного источника, между оптически сопряженными первым и вторым резонаторными зеркалами, размещенными посредством соответствующих держателей с юстировочными устройствами первого и второго резонаторных зеркал на торцевых фланцах резонатора, платформой с третьим юстировочным устройством для перемещения резонатора по высоте и нормально к оптической оси лазерного источника и устройством сведения и преобразования излучения лазерного источника, размещенным между лазерным источником и резонатором с возможностью перемещения устройства сведения и преобразования вдоль оптической оси лазера посредством четвертого юстировочного устройства и оптически сопряженным с активным элементом.

Изобретение относится к области лазерной техники и предназначено для обеспечения устойчивой генерации ультракоротких лазерных импульсов фемто-пикосекундного диапазона. Способ и устройство реализуются в однонаправленном поляризующем резонаторе, при заданном уровне оптического усиления на участке активного волокна усилителя с оптической диодной накачкой порядка 2 Вт.

Изобретение относится к способу получения прозрачной керамики иттрий-алюминиевого граната (ИАГ), в том числе легированного ионами неодима, для использования в качестве активной среды в области фотоники и лазерной техники. Способ получения прозрачной ИАГ-керамики, включающий совместный высокоэнергетический помол в этаноле исходных порошков оксидов Y2O3, Nd2O3 и Al2O3 для формирования слабоагрегированной порошковой системы стехиометрии ИАГ с размером частиц в диапазоне 50-500 нм, сушку при температуре 70°С в течение 24 ч с последующей грануляцией порошка через сито с эффективным размером ячеек 200 меш и отжигом в атмосфере воздуха при температуре 600°С в течение 4 ч, искровое плазменное спекание полученного материала на первом этапе путем нагрева со скоростью 100°С/мин до 1000°С, выдержку, отжиг полученного образца в воздушной атмосфере, отличается тем, что высокоэнергетический помол в этаноле порошков исходных оксидов Y2O3, Nd2O3 и Al2O3 осуществляют с использованием LiF в качестве спекающей добавки в количестве 0,2 вес.% при 300 об/мин в течение 12 ч, искровое плазменное спекание проводят при внешнем давлении 50-70 МПа, причем на втором этапе со скоростью 25°С/мин до 1475°С с выдержкой материала при этих давлении и температуре в течение 45-60 мин, а отжиг полученного образца ведут в течение 10 ч при температуре 900-1000°С с последующим естественным охлаждением.

Изобретение относится к гироскопам и измерительной технике и может быть использовано для регулировки периметра зеемановского четырехчастотного лазерного гироскопа. Технический результат заключается в повышении точности настройки периметра четырехчастотного зеемановского лазерного гироскопа.

Изобретение относится к лазерной волоконной технике. Оптоволоконное лазерное устройство содержит первое волокно, содержащее первую волоконную брэгговскую решетку, второе волокно, содержащее вторую волоконную брэгговскую решетку, отражательная способность которой ниже, чем у первой волоконной брэгговской решетки, и третье волокно, легированное редкоземельным элементом, первый конец которого соединен с первым волокном, а второй конец соединен со вторым волокном.

Изобретение относится к квантовым стандартам времени и частоты. Технический результат заключается в обеспечении стабильных параметров среды квантового дискриминатора и упрощении его изготовления.

Изобретение относится к лазерной технике. Компактный твердотельный лазер красного диапазона спектра включает фокусирующую линзу, резонатор с активной средой и источник оптической накачки, в качестве которой используют полупроводниковый GaN лазерный диод, а резонатор сформирован из двух зеркал.

Изобретение относится к лазерной технике. Усилитель лазерного излучения на основе твердотельного активного элемента включает основанный на лазерных диодах источник излучения накачки и твердотельный активный элемент, выступающий в роли волновода для излучения накачки.

Изобретение относится к технике импульсных газовых лазеров, работающих на смесях с высоким давлением. Технический результат - возможность поддержания однородной плазмы в активном объеме лазера с поперечной прокачкой газа.

Изобретение относится к способу получения прозрачной керамики иттрий-алюминиевого граната (ИАГ), в том числе легированного ионами неодима, для использования в качестве активной среды в области фотоники и лазерной техники. Способ получения прозрачной ИАГ-керамики, включающий совместный высокоэнергетический помол в этаноле исходных порошков оксидов Y2O3, Nd2O3 и Al2O3 для формирования слабоагрегированной порошковой системы стехиометрии ИАГ с размером частиц в диапазоне 50-500 нм, сушку при температуре 70°С в течение 24 ч с последующей грануляцией порошка через сито с эффективным размером ячеек 200 меш и отжигом в атмосфере воздуха при температуре 600°С в течение 4 ч, искровое плазменное спекание полученного материала на первом этапе путем нагрева со скоростью 100°С/мин до 1000°С, выдержку, отжиг полученного образца в воздушной атмосфере, отличается тем, что высокоэнергетический помол в этаноле порошков исходных оксидов Y2O3, Nd2O3 и Al2O3 осуществляют с использованием LiF в качестве спекающей добавки в количестве 0,2 вес.% при 300 об/мин в течение 12 ч, искровое плазменное спекание проводят при внешнем давлении 50-70 МПа, причем на втором этапе со скоростью 25°С/мин до 1475°С с выдержкой материала при этих давлении и температуре в течение 45-60 мин, а отжиг полученного образца ведут в течение 10 ч при температуре 900-1000°С с последующим естественным охлаждением.
Наверх