Способ радионуклидной диагностики рака легкого

Изобретение относится к медицине, а именно к радионуклидной диагностике, и может быть использовано для радионуклидной диагностики рака легкого. Для этого вводят радиофармацевтический препарат (РФП) и проводят сцинтиграфическое исследование. В качестве РФП вводят радиофармацевтический препарат на основе меченной технецием-99m производной глюкозы в форме раствора для внутривенных инъекций в составе: 1-ито-D-глюкозы натриевой соли гидрата 0,625 мг, олова дихлорид 2-водного 0,044-0,052 мг, аскорбиновой кислоты 0,125 мг, натрия хлорида 8,0-10,0 мг, воды для инъекций до 1 мл, в дозе 500 МБк. Через 40-120 минут после внутривенного введения препарата выполняют однофотонную эмиссионную компьютерную томографию на двухдетекторной гамма-камере, во время исследования пациента располагают на столе гамма-камеры в положении «лежа на спине», при этом в поле зрения детекторов гамма-камеры должна попадать грудная клетка от верхней апертуры до уровня диафрагмы. Полученные изображения подвергают постпроцессиноговой обработке и при визуализации асимметричных участков гиперфиксации РФП в проекции легких диагностируют злокачественное новообразование. Способ позволяет повысить эффективность, точность и информативность диагностики рака легкого. 1 ил., 1 пр.

 

Изобретение относится к медицине, в частности к радионуклидной диагностике злокачественных новообразований легкого методом однофотонной эмиссионной компьютерной томографии.

На сегодняшний день наиболее перспективными радиофармпрепаратами (РФП) для ранней диагностики злокачественных новообразований различных локализаций, в том числе рака легкого, являются меченные радиоактивными изотопами производные глюкозы. Это связано с тем, что в клетках опухоли отмечается повышенный по сравнению с нормальными клетками уровень метаболизма глюкозы. Поэтому при введении в организм радиофармацевтического препарата на основе меченой радионуклидом глюкозы отмечается гиперинтенсивная аккумуляция данного РФП в опухолевых клетках. Это в свою очередь позволяет на ранних стадиях выявлять злокачественные новообразования и оценивать распространенность процесса.

В настоящее время в России и за рубежом для диагностики опухолей и оценки эффективности противоопухолевой терапии применяется, главным образом, метод позитрон-эмиссионной томографии (ПЭТ) с РФП 2-фтор-2-дезокси-D-глюкоза (18F-ФДГ), содержащий позитрон-излучающий радионуклид фтор-18 [Baum R.P., Schmuecking М, Bonnet R. et all. F-18 FDG PET for metabolic 3D-radiation treatment planning of non-small cell lung cancer. // Eur. J. Nucl. Med. and Mol. Imag. - 2002. Vol.43. - P. 96-99]. Несмотря на высокую диагностическую информативность метода ПЭТ, его широкое применение в России ограничено из-за высокой стоимости, а также малой распространенности ПЭТ-центров. Так стоимость одного обследования с 18F-ФДГ (в зависимости от исследуемой области) колеблется от 30 тыс.рублей и более, а ориентировочная стоимость строительства ПЭТ-центра составляет около 1 миллиарда рублей. В данное время в России реально функционируют около 30 центров позитронно-эмиссионной томографии, половина которых расположены в Москве и Санкт-Петербурге.

Вместе с тем, в стране существует более 250 центров, оснащенных гамма-камерами для проведения однофотонной эмиссионной компьютерной томографии (ОФЭКТ), где диагностика чаще всего осуществляется с использованием РФП на основе наиболее доступного для медицины радионуклида короткоживущего (T1/2=6,02 ч) технеция-99 м (99mTc). Как правило, технециевые РФП изготавливаются в виде стандартных наборов реагентов (лиофилизатов) к генератору технеция-99 м, которые представляют собой смеси, приготовленные методом сублимационной сушки при низких температурах [Лыков А.В. Сублимационная сушка // В кн.: Теория сушки. - М, Энергия. - 1968. - С. 334-362]. При их смешивании с элюатом технеция-99 м (раствор натрия пертехнетата, 99mTc), выделенного из генератора, получается готовый РФП с заданными свойствами. Срок годности лиофилизатов обычно составляет 1 год.

Наиболее близким к предлагаемому способу является способ диагностики с применением меченного технецием-99m метоксиизобутилизонитрила (99mTc-МИБИ). Используемый в известном способе радиофармацевтический препарат является неспецифическим препаратом, накапливающимся в опухолевых клетках. 99mTc-МИБИ проникает в клетки опухоли путем пассивной диффузии и аккумулируется в митохондриях. Известно, что количество митохондрий в цитоплазме опухолевых клеток зависит от метаболической активности клетки, соответственно, уровень аккумуляции 99mTc-МИБИ в опухолевых клетках прямо пропорционален количеству жизнеспособных клеток и количеству митохондрий в них. На сегодняшний день представлено большое количество работ посвященных применению 99mTc-МИБИ для визуализации опухолей головного мозга: [Zhang S, Liu Y. Diagnostic Performances of 99mTc-Methoxy Isobutyl Isonitrile Scan in Predicting the Malignancy of Lung Lesions: A Meta-Analysis. Medicine (Baltimore). 2016; 95(18): e3571. doi: 10.1097/MD.0000000000003571]. Однако при этом, ОФЭКТ с 99mTc-МИБИ характеризуется невысокими показателями чувствительности и специфичности в диагностике рака легкого, чувствительность и специфичность в среднем составляют 80,9% и 71% соответственно.

Новый технический результат - повышение эффективности, точности и информативности в диагностике рака легкого, возможность проведения скрининга.

Для достижения нового технического результата в способе радионуклидной диагностики рака легкого, включающем введение радиофармацевтического препарата и последующее проведение сцинтиграфических исследований, вводят радиофармацевтический препарат на основе меченной технецием-99m производной глюкозы в форме раствора для внутривенных инъекций в составе: 1-тио-D-глюкозы натриевой соли гидрата 0,625 мг, олова дихлорид 2-водный 0,044-0,052 мг, аскорбиновой кислоты 0,125 мг, натрия хлорида 8,0-10,0 мг, воду для инъекций до 1 мл, в дозе 500 МБк, и через 40-120 минут после внутривенного введения препарата выполняют однофотонную эмиссионную компьютерную томографию на двух детекторной гамма-камере, во время исследования пациента располагают на столе гамма-камеры в положении «лежа на спине», при этом, в поле зрения детекторов гамма-камеры должна попадать грудная клетка от верхней апертуры до уровня диафрагмы, полученные изображения подвергают постпроцессиноговой обработке с использованием пакета специализированных программ и при визуализации асимметричных участков гиперфиксации РФП в проекции легких диагностируют злокачественное новообразование. Способ осуществляют следующим образом

Пациенту с подозрением на злокачественную опухоль легкого вводят радиофармацевтический препарат на основе меченной технецием-99m производной глюкозы внутривенно в дозе 500 МБк, который готовят непосредственно перед введением согласно разработанному авторами лабораторному регламенту: 4 мл раствора натрия пертехнетата (Na99mTcO4) из генератора в асептических условиях вводят с помощью шприца во флакон с реагентом путем прокалывания иглой резиновой пробки, при необходимости предварительно проводят разбавление элюата изотоническим раствором натрия хлорида до требуемой величины объемной активности, содержимое флакона перемешивают встряхиванием и инкубируют при комнатной температуре в течение 30 минут до полного растворения реагента, вводят внутривенно в дозе 500 МБк, далее через 40-120 минут после внутривенного введения препарата выполняют однофотонную эмиссионную компьютерную томографию на двухдетекторной гамма-камере, во время исследования пациент располагают на столе гамма-камеры в положении «лежа на спине»,при этом, в поле зрения детекторов гамма-камеры должна попадать грудная клетка от верхней апертуры до уровня диафрагмы, производят запись 32 кадров (64 проекции) по 30 секунд на кадр в матрицу 64×64 пикселя без аппаратного увеличения по стандартным протоколам, полученные изображения подвергают постпроцессиноговой обработке с использованием пакета специализированных программ и при визуализации асимметричных участков гиперфиксации РФП в проекции легких диагностируют злокачественное новообразование. Пример на осуществление способа

Пример 1. Пациент Д., 65 лет, Ds.: Рак верхнедолевого бронха правого легкого с переходом на среднедолевой и нижнедолевой бронхи T2aN1M0. ИГХ- плоскоклеточный рак низкой степени дифференцировки. Считает себя больным на протяжении 12 месяцев, беспокоят кашель, одышка при физической нагрузке, общая слабость. При компьютерной томографии легких выявлены следующие изменения: справа в сегментах S 2,3 визуализируется объемное образование с неравномерным накоплением контраста, с нечеткими, неровными, бугристыми контурами размерами 40×50 мм. Заключение: Центральный рак правого легкого. Результаты однофотонной эмиссионной компьютерной томографии с РФП на основе меченной технецием-99 т производной глюкозы представлены на рисунке 1.

Способ основан на анализе результатов экспериментальных клинических исследований. Для подтверждения эффективности способа в визуализации рака легкого были проведены экспериментальные клинические исследования по изучению накопления радиофармацевтического препарата у пациентов с верифицированным диагнозом злокачественной опухоли легкого в количестве 10 человек. Всем пациентам внутривенно вводили радиофармацевтический препарат на основе меченной технецием-99m производной глюкозы в дозе 500МБк. Радиофармацевтический препарат на основе меченной технецием-99m производной глюкозы готовили непосредственно перед введением согласно разработанному авторами лабораторному регламенту: 4 мл раствора натрия пертехнетата (Na99mTcO4) из генератора в асептических условиях вводили с помощью шприца во флакон с реагентом путем прокалывания резиновой пробки иглой. При необходимости предварительно проводили разбавление элюата изотоническим раствором натрия хлорида до требуемой величины объемной активности. Содержимое флакона перемешивали встряхиванием и инкубировали при комнатной температуре в течение 30 минут до полного растворения реагента (лабораторный регламент получения РФП ЛР-01895186-02-15 от 19.08.2015 г). Состав радиофармацевтического препарата представлен в таблице 1.

Через 40-120 минут после внутривенного введения препарата выполняют ОФЭКТ на двух детекторной гамма-камере Е.САМ фирмы SIEMENS в стандартном режиме, производили запись 64 проекций в матрицу 64×64 пикселя с применением низкоэнергетических коллиматоров с энергией 140КэВ. Окно дифференциального дискриминатора настроено на 20%, аппаратное увеличение не использовалось.

Полученные при исследовании изображения (сцинтиграммы) подвергают постпроцессинговой обработке с использованием фирменного пакета программ E.Soft (SIEMENS, Германия). Патологическими считались асимметричные участки повышенной аккумуляции препарата в проекции легких и грудной стенки (Фиг. 1).

Результаты исследования продемонстрировали 100% чувствительность способа в диагностике злокачественных опухолей легких, то есть с применением указанного радиофармпрепарата удалось визуализировать опухоль у всех пациентов, включенных в исследование.

Таким образом, предлагаемый способ диагностики рака легких с применением радиофармацевтического препарата на основе меченной технецием-99m производной глюкозы позволяет отчетливо визуализировать злокачественные опухоли легких на метаболическом уровне, степень аккумуляции представленного радиофармпрепарата в опухоли дает возможность получать сцинтиграфические изображения надлежащего качества. Таким образом, применение нового радиофармацевтического препарата на основе меченной технецием-99m производной глюкозы позволит повысить эффективность диагностики злокачественных опухолей легких методом однофотонной эмиссионной компьютерной томографии.

Приложение

Таблица 1

1. Состав радиофармацевтического препарата «99mTc-1-тио-D-глюкоза».

2. Фиг. 1 - ОФЭКТ с РФП на основе меченной технецием производной глюкозы пациента с диагнозом центральный рак правого легкого. Визуализируется очаг метаболической гиперфиксации препарата в проекции верхней доли правого легкого с нечеткими контурами.

Способ радионуклидной диагностики рака легкого, включающий введение радиофармацевтического препарата и последующее проведение сцинтиграфических исследований, отличающийся тем, что вводят радиофармацевтический препарат на основе меченной технецием-99m производной глюкозы в форме раствора для внутривенных инъекций в составе: 1-тио-D-глюкозы натриевой соли гидрата 0,625 мг, олова дихлорид 2-водного 0,044-0,052 мг, аскорбиновой кислоты 0,125 мг, натрия хлорида 8,0-10,0 мг, воды для инъекций до 1 мл, в дозе 500 МБк, и через 40-120 минут после внутривенного введения препарата выполняют однофотонную эмиссионную компьютерную томографию на двухдетекторной гамма-камере, во время исследования пациента располагают на столе гамма-камеры в положении «лежа на спине», при этом в поле зрения детекторов гамма-камеры должна попадать грудная клетка от верхней апертуры до уровня диафрагмы, полученные изображения подвергают постпроцессиноговой обработке, и при визуализации асимметричных участков гиперфиксации РФП в проекции легких диагностируют злокачественное новообразование.



 

Похожие патенты:

Изобретение относится к медицине, а именно к онкологии, и может быть применимо к оценке результатов лечения диссеминированного почечно-клеточного рака. У больного выполняют компьютерно-томографическое исследование с контрастным усилением и рассчитывают объем метастатического поражения легких.
Изобретение относится к области медицины, а именно к области травматологии, и может быть использовано для изготовления предоперационной модели позвоночника у детей с врожденными аномалиями развития и деформациями. Выполняют мультиспиральную компьютерную томографию (МСКТ) с 64 срезами за один оборот гентри с толщиной среза 0,625 мм, без наклона «гентри» с напряжением 120 kV, силой тока 175 mA, за время 2,2 секунды при pitch 0,516:1.

Изобретение относится к медицине, а именно к ангиологии, сосудистой хирургии, рентгенологии и может быть использовано для диагностики синдрома высокой перемежающейся хромоты у больных после операций на аортоподвздошном сегменте. Определяют среднюю скорость кровотока в ягодичных мышцах.
Изобретение относится к медицине, в частности к кардиохирургии. Выполняют продольную стернотомию.

Изобретение относится к медицине, а именно к лучевой диагностике, и может быть использовано для дифференциальной диагностики доброкачественных и злокачественных опухолей печени у детей. Получают изображения методом магнитно-резонансной томографии (МРТ).

Группа изобретений относится к медицине. Детектор рентгеновского излучения аппарата для формирования двухэнергетических данных рентгеновского изображения располагают относительно источника рентгеновского излучения так, что по меньшей мере часть зоны между источником рентгеновского излучения и детектором рентгеновского излучения представляет собой область исследования для размещения объекта.

Группа изобретений относится к медицине. Детектор рентгеновского излучения аппарата для формирования двухэнергетических данных рентгеновского изображения располагают относительно источника рентгеновского излучения так, что по меньшей мере часть зоны между источником рентгеновского излучения и детектором рентгеновского излучения представляет собой область исследования для размещения объекта.
Изобретение относится к области медицины, а именно к хирургии, и может быть использовано для прогнозирования риска развития послеоперационных осложнений после панкреатодуоденальной резекции. Выполняют компьютерную томографию при строго симметричном относительно средней линии тела горизонтальном положении пациента.

Изобретение относится к области медицины, в частности к рентгенологии, и может быть использовано для исследования состояния легких при подозрении на COVID-19 с помощью низкодозной компьютерной томографии. Проводят сканирование при положении пациента на спине с отведенными к голове руками, при задержке дыхания на глубине вдоха.

Способ относится к медицине, а именно к лучевой диагностике, и может быть использован для определения модуля сдвига для стенки кровеносного сосуда на основе интраваскулярной оптической когерентной томографии. Получают структурные изображения оптической когерентной томографии (ОКТ) для исследуемого участка стенки кровеносного сосуда.
Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано для предоперационного планирования хирургического лечения идиопатического сколиоза у детей с незавершенным ростом - 10-14 лет. Предварительно всем пациентам выполняется рентгенография позвоночника на уровне C7-S1 в степ-режиме в двух проекциях с определением величины основной деформации и грудного кифоза. Если по рентгенограммам имеются признаки размера корней дужек позвонков на вогнутой стороне вершины грудной сколиотической дуги менее 5 мм, то таким пациентам дополнительно проводится мультиспиральная компьютерная томография (МСКТ) грудного отдела позвоночника для определения толщины корней дужек позвонков на вогнутой стороне вершины грудной дуги. Группе пациентов, у которых толщина дужки позвонка на вогнутой стороне вершины грудной дуги по данным МСКТ менее 5 мм, планируют проведение вентрального этапа с последующим дорсальным гибридным типом фиксации. Группе пациентов, у которых по данным рентгенографии отсутствуют признаки размера корней дужек позвонка на вогнутой стороне вершины грудной сколиотической дуги менее 5 мм, при этом величина основной грудной дуги и грудного кифоза не превышают 80°, планируют проведение одноэтапной тотальной транспедикулярной фиксации. Группе пациентов, у которых по данным рентгенографии отсутствуют признаки размера корней дужек позвонка на вогнутой стороне вершины грудной сколиотической дуги менее 5 мм, при этом величина основной грудной дуги и/или грудного кифоза превышают 80°, определяют мобильность деформации основной грудной сколиотической дуги и грудного кифоза, путем выполнения рентгенографии позвоночника в положении наклона в сторону грудной сколиотической дуги и лежа на валике. Группе пациентов, у которых мобильность обеих деформаций больше 25%, планируют проведение одноэтапной тотальной транспедикулярной фиксации. Группе пациентов, у которых мобильность хотя бы одной из деформаций меньше 25%, планируют проведение передней вентральной мобилизации с последующей тотальной транспедикулярной фиксацией. Способ обеспечивает повышение качества хирургического лечения, достижение оптимальной коррекции; отсутствие послеоперационного прогрессирования; сокращение времени пребывания в стационаре и быструю послеоперационную реабилитацию за счет планирования коррекции с учетом индивидуальных особенностей строения позвоночника пациента. 6 пр.
Наверх