Пластинчатый теплообменник с торцевыми пластинами

Настоящее изобретение относится к пластинчатому теплообменнику, включающему набор узорчатых пластин теплопередачи, соединенных друг с другом путем пайки или сварки, причем узоры соединенных соседних пластин теплопередачи соответственно формируют первый путь потока и второй путь потока на противоположных сторонах пластины теплопередачи, причем указанные пластины теплопередачи содержат выровненную первую пару отверстий, образующих соответственно первый вход и первый выход для первой текучей среды, подлежащей распределению по указанному первому пути потока, при этом первая торцевая пластина присоединена к набору первой боковой краевой пластины теплопередачи первым отверстием, выровненным с первым входом, и вторая торцевая пластина присоединена к набору второй боковой краевой пластины теплопередачи углубленной областью, выровненной с первым входом, причем вторая боковая краевая пластина теплопередачи сформирована с контактным выступом, соединенным и спаянным или сваренным с внутренней поверхностью второй торцевой пластины. Техническим результатом изобретения является повышение механической прочности конструкции за счет уменьшения уровня деформации в области вокруг отверстий/проходов во второй торцевой пластине, а также упрощение сборки традиционного пластинчатого теплообменника. 9 з.п. ф-лы, 6 ил.

 

УРОВЕНЬ ТЕХНИКИ

Традиционная конструкция пластинчатого теплообменника включает множество пластин теплопередачи, установленных друг на друга. Пластины теплопередачи сформированы таким образом, что пути потока образованы между каждым набором соседних пластин теплопередачи. В пластинах теплопередачи выполнены отверстия для формирования входов и выходов для текучих сред в данных путях потока. Пластины расположены между торцевыми пластинами, причем торцевые пластины одного и того же материала и веса часто бывают относительно тонкими, например, такой же толщины, что и пластины теплопередачи, или лишь немного толще.

Пластины теплопередачи спаиваются или свариваются вместе в местах соединений, точно так же, как соответственно верхняя и нижняя пластины теплопередачи спаиваются или соединяются с соответствующими верхней и нижней торцевыми пластинами.

В областях отверстий давления особенно высоки, и из-за относительно маленькой толщины торцевые пластины имеют тенденцию деформироваться при высоких давлениях, что может привести к прорыву или разрыву соединения с соседними пластинами теплопередачи, что может привести к утечкам.

Задачей настоящего изобретения является упрощение сборки традиционного пластинчатого теплообменника и в то же время повышение механической прочности за счет уменьшения уровня деформаций в области вокруг отверстий/проходов на второй торцевой пластине.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Указанные задачи решаются с помощью изобретения, раскрытого в формуле изобретения.

Оно относится к пластинчатому теплообменнику, включающего набор узорчатых пластин теплопередачи, соединенных друг с другом путем пайки или сварки, и задающих первую сторону и вторую сторону, причем узоры соединенных соседних пластин теплопередачи формируют соответственно первый путь потока и второй путь потока на противоположных сторонах пластины теплопередачи, причем указанные пластины теплопередачи содержат выровненную первую пару отверстий, образующих соответственно первый вход и первый выход для первой текучей среды, подлежащей распределению к указанному первому пути потока, при этом первая торцевая пластина присоединена к набору первой боковой краевой пластины теплопередачи с первым отверстием, выровненным с первым входом, и вторая торцевая пластина присоединена к набору второй боковой краевой пластины теплопередачи углубленной областью, выровненной с первым входом, причем вторая боковая краевая пластина теплопередачи сформирована с контактным выступом, соединенным и спаянным или сваренным с внутренней поверхностью второй торцевой пластины.

Углубленная область может быть изогнутой в направлении наружу относительно набора и может иметь форму купола.

В варианте осуществления вторая боковая краевая пластина теплопередачи сформирована с углубленным участком, выровненным с углубленной областью второй торцевой пластины, и изгибается в направлении наружу относительно набора, причем вторая боковая краевая пластина теплопередачи соединена путем пайки или сварки с внутренней поверхностью углубленной области указанной второй торцевой пластины, причем углубленный участок второй боковой краевой пластины теплопередачи имеет форму купола.

Под «выровненными» подразумевается, что они по меньшей мере частично перекрываются.

В одном варианте осуществления углубленный участок пластины теплопередачи выступает наружу относительно набора и имеет плоскую верхнюю поверхность, соединенную путем пайки или сварки с углубленной областью.

В одном варианте осуществления углубленный участок пластины теплопередачи выступает наружу относительно набора и имеет плоскую верхнюю поверхность, соединенную путем пайки или сварки с окружностью углубленной области.

В варианте осуществления выступ сформирован в виде круглого выступа, контактирующего со второй торцевой пластиной в области, окружающей углубленную область.

В одном варианте осуществления выступ имеет закругленную верхнюю поверхность.

В одном варианте осуществления выступ имеет плоскую верхнюю поверхность.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 - вид сбоку пластинчатого теплообменника наборного типа с верхними и нижними торцевыми пластинами, а также входами и выходами.

Фиг. 2 вид нескольких уложенных в набор торцевых пластин и пластин теплопередачи.

Фиг. 3 - вид варианта осуществления усиленного соединения во входной зоне.

Фиг. 4 - вид варианта осуществления усиленного соединения во входной зоне.

Фиг. 5 - вид варианта осуществления усиленного соединения во входной зоне.

Фиг. 6 - вид варианта осуществления усиленного соединения во входной зоне.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Следует понимать, что подробное описание изобретения и конкретные примеры предпочтительных вариантов осуществления изобретения приведены только в иллюстративных целях, поскольку различные изменения и модификации в рамках сущности и объема изобретения будут очевидны для специалиста в данной области техники из данного подробного описания изобретения.

На фиг.1 показан вид сбоку традиционного пластинчатого теплообменника (100), включающего набор (110) узорчатых пластин (1) теплопередачи, соединенных друг с другом путем пайки или сварки.

Первая торцевая пластина (10) соединена с первой стороной набора (110), а вторая торцевая пластина (11) - со второй стороной набора (110). На чертеже соединения (50) отверстий соединены с первой торцевой пластиной (10), соединяющей пути потока, образованные между пластинами (1) теплопередачи в наборе с трубопроводами или трубами для потока текучей среды системы обогрева. На чертеже, если смотреть сбоку, показаны только два таких соединения (50) отверстий, и оба в первой торцевой пластине (10). Как видно на фиг. 2, обычно имеется четыре таких соединения (50) отверстий, а в другом варианте осуществления некоторые из них могут находиться в первой торцевой пластине (10), а другие - во второй торцевой пластине (11).

На фиг. 2 показан тот же теплообменник (100), имеющий 6 пластин (1, 1a, 1b) теплопередачи, хотя может применяться любое количество, и обычно он содержит значительно больше пластин (1) теплопередачи, чем показано на чертеже.

Пластины (1, 1а, 1b) теплопередачи выполнены в виде тонких листов, имеющих форму узора (5), такого как проиллюстрированные гофры в форме шеврона. Однако также применима любая другая форма узора (5). Каждая вторая пластина (1, 1a, 1b) теплопередачи может быть сформирована с различными узорами (5) или может просто вращаться относительно других пластин так, что узоры (5) будут только пересекать друг друга, с образованием соответственно первого пути потока и второго пути потока на противоположных сторонах пластины (1, 1a, 1b) теплопередачи. Скрещенные узоры (5) образуют области теплопередачи.

Пластины (1, 1a, 1b) теплопередачи, а также первая (10) и вторая (11) торцевые пластины припаяны или приварены к ободам для герметизации путей потока с внешней стороны и, возможно, на некоторых или всех других точках соединения.

По меньшей мере некоторые из пластин (1, 1а, 1b) теплопередачи содержат первую пару отверстий (20, 21) и вторую пару отверстий (22, 23), одна из которых не видна на чертеже. Отверстия (20, 21, 22, 23) выровнены с соответствующими отверстиями соседних пластин (1, 1a, 1b) теплопередачи, так что, например, выровненная первая пара отверстий (20, 21) образует первый вход (20a) и первое выходное отверстие (21a) для первых путей потока соответственно (проиллюстрировано на фиг.1), и выровненная вторая пара отверстий (22, 23) образует второй вход и второй выход для первых путей потока соответственно (не показаны).

Первая торцевая пластина (10) соединена с первой боковой краевой пластиной (1a) теплопередачи с первым соединительным отверстием (30), выровненным с первым входом (20a), а вторая торцевая пластина (11) соединена с набором (110) второй боковой краевой пластины (1b) теплопередачи с углубленной областью (12), выровненной с первым входом (20a). Углубленная область (12) может выступать наружу относительно второй торцевой пластины (11) или может быть просто плоской частью второй торцевой пластины (11), выровненной с первым входом (20а).

Кроме того, в проиллюстрированном примере вторые отверстия (31) выровнены с первым входом (21a), третьи отверстия (32) выровнены со вторым входом, и четвертое отверстие (33) выровнено со вторым выходом. В других вариантах осуществления отверстия отличаются. В других вариантах осуществления некоторые из отверстий (30, 31, 32, 33) сформированы во второй торцевой пластине (11), таким образом, соответствующие углубленные области (12) находятся в первой торцевой пластине (10). Кроме того, в некоторых других вариантах осуществления соответственно первая и вторая пары, а также первый и второй входы и выходы расположены по-разному.

Соединения (50) отверстий соединены с первой торцевой пластиной (10) (соответственно, второй торцевой пластиной (11)) и отверстиями (30, 31, 32, 33).

На фиг.3 показан вид первого варианта осуществления настоящего изобретения с усилением, иллюстрирующий область вокруг первого входа (20а) в области второй боковой краевой пластины (1b) теплопередачи и второй торцевой пластины (11). В варианте осуществления вторая боковая краевая пластина (1b) теплопередачи сформирована с углубленным участком (2), что означает, что она не имеет никакого отверстия (20). Углубленный участок (2) образует плоскую верхнюю поверхность (2b) выступа (3), сформированного на второй стороне краевой пластины (1b) теплопередачи в

направлении наружу относительно набора (110), причем указанная плоская верхняя поверхность (2b) соединена путем пайки или сварки с углубленной областью (12) второй торцевой пластины (11), которая выглядит плоской. Область (120) уплотнения проиллюстрирована между второй боковой краевой пластиной (1b) теплопередачи и ее соседней пластиной (1) во входной области (20а). Первый путь F1 потока и второй путь F2 потока показаны между соседними пластинами (1, 1b) теплопередачи, но область E между внутренней поверхностью второй торцевой пластины (11) и внешней поверхностью второй краевой пластины (1b) теплопередачи пуста.

На фиг. 4 показан вид, аналогичный виду с фиг. 3, иллюстрирующий второй вариант осуществления с усилением, в котором углубленная область (12) изгибается в направлении наружу относительно набора (110). В данном варианте осуществления выступ (3) сформирован как в варианте осуществления с фиг. 3, только так, чтобы его верхняя поверхность (2b) больше, чем изогнутая углубленная область (12), и, таким образом, была соединена с ее окружностью. Остальная часть плоской верхней поверхности (2b), таким образом, «покрывает» углубленную область (12) в плоскости выпуклой части второй торцевой пластины (11). В одном варианте осуществления изогнутая углубленная область (12) имеет форму купола.

На фиг. 5 показан вид, аналогичный виду с фиг. 4, иллюстрирующий третий вариант осуществления с усилением, причем выступ (3) имеет круглую форму с верхней поверхностью (2b) с диаметром, который больше, чем изогнутая углубленная область (12), с соединением таким образом со второй торцевой пластиной (11) в области, окружающей углубленную область (12).

На фиг.6 показан вид четвертого варианта осуществления с усилением, аналогичный видам с фиг. 4 и 5, с изогнутой или куполообразной углубленной областью (12), но в данном случае выступ (3) имеет изогнутую форму с верхней поверхностью (2b), изогнутой наружу относительно набора (110) и соединенной путем пайки или сварки с углубленной областью (12) второй торцевой пластины (11).

1. Пластинчатый теплообменник (100), включающий набор (110) узорчатых (5) пластин (1) теплопередачи, соединенных друг с другом путем пайки или сварки и задающих первую сторону и вторую сторону, причем узоры (5) соединенных соседних пластин (1) теплопередачи формируют соответственно первый путь потока и второй путь потока на противоположных сторонах пластины (1) теплопередачи, причем указанные пластины (1) теплопередачи содержат выровненную первую пару отверстий (20, 21), образующих соответственно первый вход (20a) и первый выход (21a) для первой текучей среды, подлежащей распределению к указанному первому пути потока, при этом первая торцевая пластина (10) присоединена к набору (110) первой боковой краевой пластины (1a) теплопередачи первым отверстием (30), выровненным с первым входом (20a), и вторая торцевая пластина (11) присоединена к набору (110) второй боковой краевой пластины (1b) теплопередачи углубленной областью (12), выровненной с первым входом (20a), отличающийся тем, что вторая боковая краевая пластина (1b) теплопередачи сформирована с контактным выступом (3), соединенным и спаянным или сваренным с внутренней поверхностью второй торцевой пластины (11).

2. Пластинчатый теплообменник (100) по п.1, отличающийся тем, что углубленная область (12) изогнута в направлении наружу относительно набора (110).

3. Пластинчатый теплообменник (100) по п.2, отличающийся тем, что углубленная область (12) имеет форму купола.

4. Пластинчатый теплообменник (100) по п.2 или 3, отличающийся тем, что вторая боковая краевая пластина (1b) теплопередачи сформирована с углубленным участком (2), выровненным с углубленной областью (12) второй торцевой пластины (11), и, изгибается в направлении наружу относительно набора (110), причем вторая боковая краевая пластина (1b) теплопередачи соединена путем пайки или сварки с внутренней поверхностью углубленной области (12) указанной второй торцевой пластины (11).

5. Пластинчатый теплообменник (100) по п.4, отличающийся тем, что углубленный участок (2) второй боковой краевой пластины (1b) теплопередачи имеет форму купола.

6. Пластинчатый теплообменник (100) по любому из пп.1-3, отличающийся тем, что пластина (1b) теплопередачи выполнена с углубленным участком (2), выровненным с углубленной областью (12) второй торцевой пластины (11), причем указанный углубленный участок (2) выступает наружу относительно набора (110) и имеет плоскую верхнюю поверхность (2а), соединенную путем пайки или сварки с углубленной областью (12).

7. Пластинчатый теплообменник (100) по любому из пп.1-3, отличающийся тем, что пластина (1b) теплопередачи сформирована с углубленным участком (2), выровненным с углубленной областью (12) второй торцевой пластины (11), причем указанный углубленный участок (2) выступает наружу относительно набора (110) и имеет плоскую верхнюю поверхность (2a), соединенную путем пайки или сварки с окружностью углубленной области (12).

8. Пластинчатый теплообменник (100) по любому из пп.1-3, отличающийся тем, что выступ (3) сформирован в виде круглого выступа, контактирующего со второй торцевой пластиной (11) в области, окружающей углубленную область (12).

9. Пластинчатый теплообменник (100) по п.8, отличающийся тем, что выступ (3) имеет закругленную верхнюю поверхность (2b).

10. Пластинчатый теплообменник (100) по п.8, отличающийся тем, что выступ (3) имеет плоскую верхнюю поверхность (2b).



 

Похожие патенты:

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках, в которых по меньшей мере один поток текучей среды представляет собой жидкостно-газовую или многокомпонентную смесь. В теплообменнике (1), содержащем множество пластин (2), расположенных параллельно так, чтобы образовать первый ряд проходов (10) для направления по меньшей мере одной первой текучей среды (F1) и второй ряд проходов (20) для направления по меньшей мере одной второй текучей среды (F2), которая предназначена для приведения в теплообменный контакт, по меньшей мере, с указанной первой текучей средой (F1), смесительное устройство (3), расположенное в указанном по меньшей мере одном проходе (10) первого ряда и содержащее по меньшей мере один первый канал (31) для потока первой фазы (61) первой текучей среды (F1), следующей в направлении потока (z), по меньшей мере один второй канал (32) для потока второй фазы (62) первой текучей среды (F1) и по меньшей мере одно отверстие (34), соединяющее по текучей среде первый канал (31) со вторым каналом (32), отверстие (34) содержит первую часть (34a), ведущую в первый канал (31), при этом указанная первая часть (34a) имеет первое поперечное сечение, и вторую часть (34b), расположенную между первой частью (34a) и вторым каналом (32), при этом вторая часть (34b) имеет второе поперечное сечение, при этом первое поперечное сечение больше второго поперечного сечения.

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках. Описана пластина (3) теплообменника, содержащая теплообменную область в теплопередающей пластине (11) и направляющую область опорного стержня у кромки (14) теплопередающей пластины (11), углубление (13) в кромке (14) и вставку (12), установленную в углублении (13).

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках. Описана пластина (3) теплообменника, содержащая теплообменную область в теплопередающей пластине (11) и направляющую область опорного стержня у кромки (14) теплопередающей пластины (11), углубление (13) в кромке (14) и вставку (12), установленную в углублении (13).

Изобретение относится к области энергетики. Пластинчатый теплообменник содержит набор пластин теплообменника, образующих первый проточный путь и второй проточный путь, при этом каждая пластина теплообменника содержит отверстие в области отверстия, при этом область отверстия соединена с одним из двух проточных путей и герметизирована относительно другого из двух проточных путей посредством системы прокладок.

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. Предложены теплопередающая пластина (4a, 4b, 4c) и пакет (2) пластин для теплообменника.

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. Предложены теплопередающая пластина (4a, 4b, 4c) и пакет (2) пластин для теплообменника.

Теплообменник (1) с пластинами, содержащий первый ряд каналов (10) для пропускания по меньшей мере одной охлаждающей текучей среды (F1) и второй ряд каналов (20) для пропускания по меньшей мере одной теплотворной текучей среды (F2), при этом каждый канал (10, 20) образован между двумя следующими друг за другом пластинами (2) и проходит параллельно продольной оси (z), по меньшей мере одно смесительное устройство (3), расположенное в по меньшей мере одном канале (10) первого ряда, при этом указанное смесительное устройство (3) выполнено с возможностью приема жидкой фазы (61) и газообразной фазы (62) охлаждающей текучей среды (F1) и распределения смеси указанных фаз (61, 62) в указанный по меньшей мере один канал (10).

Изобретение относится к области теплообмена между газовыми потоками. Способ изготовления пластинчатого щелевого теплообменника включает сборку из пластин щелевых каналов, герметизацию которых производят путем сварки образующих щелевой канал пластин попарно между собой, сборку щелевых каналов в пакет и укладку пакета щелевых каналов в корпус, причем щелевые каналы изготавливают в соответствии с соотношением: , гдеL – длина щелевого канала,b – ширина щелевого канала,r – размер щелевого канала в поперечном направлении,CV – теплоемкость газа, – коэффициент теплопроводности газа,J – поток газа,а после сварки щелевых каналов в их торцы герметично вваривают входные и выходные трубопроводы, которые соединяют, образуя входной и выходной тракт высокотемпературного газового потока, при этом расстояния между соседними щелевыми каналами выбирают равными размеру щелевого канала в поперечном направлении r, после чего пакет щелевых каналов герметично вваривают в толстостенный внешний корпус, а в противоположные торцы внешнего корпуса вваривают входной и выходной трубопроводы тракта низкотемпературного газового потока, причем расстояние между боковыми стенками соседних щелевых каналов и между внешним корпусом и соседними боковыми пластинами щелевых каналов выбирают равным размеру щелевого канала в поперечном направлении r.

Пластина (1) для пластинчатого теплообменника (12) для использования в системе (9) для концентрирования веществ в воде. Теплообменная зона (2) определяет множество первых каналов на первой поверхности пластины (1) и множество вторых каналов на второй поверхности пластины (1).

Пластина (1) для пластинчатого теплообменника (12) для использования в системе (9) для концентрирования веществ в воде. Теплообменная зона (2) определяет множество первых каналов на первой поверхности пластины (1) и множество вторых каналов на второй поверхности пластины (1).

Изобретение относится к теплотехнике и может быть использовано в пластинчатых теплообменниках. Предложены теплопередающая пластина (2) и прокладка (5). Теплопередающая пластина (2) содержит, по меньшей мере, одну первую область (44) отверстия и противоположные переднюю и заднюю стороны (4, 6), первую и вторую плоскости (38, 40), ограничивающие протяженность теплопередающей пластины (2). Каждая из упомянутой, по меньшей мере, одной первой области (44) отверстия дополнительно содержит кольцевой первый внутренний участок (56) отверстия, проходящий вдоль первой и второй секций (52, 54) упомянутого первого внутреннего края (50), при этом первый внутренний участок (56) отверстия содержит опорные выступы (62) с верхним участком (64), проходящим в первой плоскости (38), а теплопередающая пластина (2) проходит в пределах первого внутреннего участка (56) отверстия и снаружи упомянутого количества первых опорных выступов (62) на некотором расстоянии ≠ 0 от первой и второй плоскостей (38, 40). Технический результат – предотвращение образования незаполненных зазоров между гофрированными или волнистыми внутренними краями теплопередающих пластин. 2 н. и 15 з.п. ф-лы, 24 ил.
Наверх