Способ термокислотной обработки призабойной зоны пласта

Изобретение относится к методам интенсификации добычи нефти из карбонатных коллекторов путем проведения соляно-кислотной обработки призабойной зоны пласта и может быть использовано для увеличения притока жидкости и нефти к скважинам, эксплуатирующим гидрофобизированные карбонатные пласты. Техническим результатом является повышение охвата пласта кислотным воздействием путем использования горячей кислоты без снижения активности и концентрации кислотного раствора. Предложен способ термокислотной обработки призабойной зоны пласта, включающий спуск колонны насосно-компрессорных труб до продуктивного карбонатного пласта, герметизацию межтрубного пространства пакером, нагрев кислотного состава в стволе скважины и закачку горячей кислоты в пласт. При этом на колонне насосно-компрессорных труб в скважину спускают индукционный нагреватель с турбулизатором потока в его верхней части и датчиком температуры в его нижней части с функцией передачи данных по температуре окружающей среды по силовому кабелю электропитания нагревателя на станцию управления процессом закачки. Индукционный нагреватель располагают над пластом для поддержания температуры кислотного состава на необходимом уровне путем регулирования мощности индукционного нагревателя и объемного расхода кислотного состава. 1 ил.

 

Изобретение относится к методам интенсификации добычи нефти из карбонатных коллекторов путем обработки призабойной зоны пласта кислотными составами и может быть использовано для увеличения притока жидкости и нефти к скважинам, с помощью которых ведется разработка гидрофобизированных карбонатных пластов.

Для повышения эффективности применения соляно-кислотных обработок в карбонатных породах необходимо на первом этапе удалять с поверхности продуктивного коллектора асфальтосмолопарафиновые вещества (АСПВ) для организации непосредственного контакта соляной кислоты с карбонатными минералами, например кальцитами или доломитами. Удаление АСПВ осуществляют закачкой органического растворителя или соляной кислоты повышенной температурой. Кислота должна иметь температуру, превышающую температуру плавления парафина в пластовых условиях. Температура плавления АСПВ для многих месторождений колеблется в пределах 45-55°С, но имеются и уникальные месторождения, например имени Романа Требса в Тимано-Печорском нефтегазоносной провинции, где величина этого параметра доходит до 85-90°С.

Очевидным является то, что для условий проведения термокислотной обработки определенного нефтенасыщенного пласта необходимо выполнение двух условий:

- знание температуры плавления tпл АСПВ в пластовых условиях;

- обеспечение температуры кислотного состава в зоне пласта в роли теплопередающей жидкости выше параметра tпл.

Известен способ термокислотной обработки нефтегазоносных пластов (пат. РФ № 2675617, Е21В 43/24, опуб. 2018 г.) заключающийся в том, что в зону реагирования в контейнере на насосно-компрессорных трубах НКТ спускают металлический магний, алюминий или цинк в виде стержней диаметром 30-35 мм и длиной до 1 м или в виде гранул, затем закачивают нитрат аммония в виде гомогенного 50-70%-ного водного раствора. Продавливают раствор нитрата аммония водой или нефтью в продуктивный пласт, затем закачивают 15-20%-ную соляную кислоту в количестве 110-120 частей на одну часть магния, алюминия или цинка, продавку раствора нитрата аммония в продуктивный пласт осуществляют

Особенность изобретения - использование нескольких компонентов, причем для успешного осуществления процесса, каждый компонент должен использоваться в соответствии с технологическим регламентом, что, безусловно, увеличивает временные и экономические затраты. Основной недостаток способа - нет возможности регулировать температуру закачиваемых жидкостей в продуктивный пласт.

Известен способ обработки призабойной зоны пласта (ПЗП) с использованием технологии термокислотного воздействия на карбонатные породы. Основа существующей технологии - использование тепловой энергии, которая образуется при взаимодействии раствора соляной кислоты с металлическим магнием (И.Т Мищенко. Скважинная добыча нефти: Учебное пособие для вузов - М.: Изд-во «Нефть и Газ» РГУ нефти и газа им. И.М. Губкина, 2007 г., источник информации на стр. 253-256). Эта реакция протекает с выделением тепловой энергии, которая нагревает раствор кислоты и пласт, расплавляет парафиновые и смолистые отложения. Оставшийся кислотный раствор, после взаимодействия с магнием, растворяет очищенную от отложений карбонатную породу, увеличивая размеры каналов и трещин, по которым пластовая продукция поступает в скважину.

Недостатком данного способа являются то, что температура соляной кислоты может меняться в широком диапазоне в зависимости от объемного расхода прокачиваемой кислоты, она неизвестна персоналу и нет возможности регулировать температуру кислоты, подаваемую в нефтенасыщенный пласт.

Еще одним недостатком метода является снижение концентрации кислотного раствора при реагировании его с магнием. В данном случае использование выскоконцентрированной кислоты, для предотвращения снижения активности способствует интенсификации коррозионных процессов в оборудовании, что приводит к отрицательному эффекту от обработки. Это минимизирует вероятность применения высококонцентрированных растворов.

Технической задачей предлагаемого изобретения является совершенствование технологического процесса осуществления термокислотной обработки гидрофобизированных карбонатных нефтенасыщенных коллекторов путем обеспечения температуры закачиваемого в пласт кислотного состава выше температуры плавления асфальтосмолопарафиновых веществ на поверхности пластообразующих пород.

Техническая задача по изобретению решается тем, что по способу термокислотной обработки призабойной зоны пласта, заключающемуся в спуске колонны насосно-компрессорных труб до продуктивного пласта, герметизации межтрубного пространства пакером, нагреве кислотного состава в стволе скважины и закачке горячей кислоты в пласт, на колонне насосно-компрессорных труб в скважину спускают индукционный нагреватель с турбулизатором потока в его верхней части и датчиком температуры в его нижней части с функцией передачи данных по температуре окружающей среды по силовому кабелю электропитания нагревателя на станцию управления процессом закачки. Индукционный нагреватель располагают над пластом для поддержания температуры кислотного состава на необходимом уровне путем регулирования мощности индукционного нагревателя и объемного расхода кислотного состава.

Известен индукционный нагреватель «ТермИТ-3», основные характеристики которого приведены в публикации «Усовершнествование термического метода повышения производительности добывающих скважнин с высоковязкой и парафинистой» авторов: Владимиров А.В., Колевантов А.Н., Насыров A.M. (сборник тезисов IX Научно - практической конференции - 2019. - Ижевск: Институт компьютерных исследований - С. 373-377). Индукционный нагреватель состоит из трех составляющих: автоматизированной станции управления, кабельной линии и погружного блока - индуктора. Работа индукционного нагревателя основывается на преобразовании энергии электромагнитного поля в тепловую энергию. Магнитное поле генерируется индуктором, который представлен многовитковыми цилиндрическими катушками, соединенными в модули. Проходя через эти катушки, переменный электрический ток возле них создает переменное магнитное поле. Вихревые потоки, образуемые от переменного тока, трансформируют электрическую энергию в тепло, которая нагревает протекающую в полости катушек жидкость.

Способ реализуется по схеме, приведенной на фигуре, где позициями указано следующее: 1 - обсадная колонна скважины, 2 - насосно-компрессорные трубы, 3 - пакерующее устройство, 4 - индукционный нагреватель, 5 - воронка, 6 - датчик температуры, 7 - силовой кабель электропитания с функцией обратной связи от датчика температуры, 8 - станция управления процессом закачки кислоты, 9 - насосный агрегат типа ЦА-320, 10 - устьевой расходомер, 11 - карбонатный пласт, 12 - турбулизатор потока жидкости.

Термокислотноая обработка призабойной зоны пласта проводится в следующем порядке:

1. В лабораторных условиях определяется температура плавления АСПВ в модели карбонатного коллектора месторождения.

2. Насосным агрегатом 9 в колонну НКТ 2 через расходомер 10 закачивают соляную или иной кислотный состав. Одновременно с этим через станцию управления 8 включают в действие индукционный нагреватель 4.

3. Уже до подхода кислотного состава с помощью расходомера 10 и индукционного нагревателя 4 регулируется температура идущего вниз потока жидкости (технической воды или нефти).

4. Равномерность нагрева идущей вниз сквозь нагреватель 4 жидкости достигается его смешением турбулизатором 12.

5. В момент поступления кислотного состава в устройство 4 организуется дополнительный контроль за температурой раствора кислоты так, чтобы он был выше температуры плавления АСПВ, накопившихся в поровом пространстве пласта.

6. Необходимая температура, фиксируемая датчиком 6, достигается изменением режима работы устройств 9 и 4. Например, для повышения температуры необходимо:

- снизить объемный расход закачки кислотного раствора насосным агрегатом 9 и одновременно повысить электрическую мощность индукционного нагревателя 4;

- для снижения температуры закачиваемой кислоты надо действовать в обратном порядке.

По изобретению решается существующая сегодня задача - в пласт подается кислота с необходимой температурой. Асфальтосмолопарафиновые соединения расплавляются и вслед идущей кислотой перемещаются вглубь и на периферию карбонатного пластового массива. Свежие порции соляной кислоты реагируют с очищенной карбонатной породой, образуются червоточины, повышается проницаемость пласта с последующим ростом дебита скважины по жидкости и по нефти.

По мнению авторов в предложенном способе реализован принцип контролируемого и управляемого технологического процесса кислотного воздействия на пласт путем организации информационной картины процесса с помощью датчика температуры и линии обратной связи.

Способ термокислотной обработки призабойной зоны пласта, включающий спуск колонны насосно-компрессорных труб до продуктивного карбонатного пласта, герметизацию межтрубного пространства пакером, нагрев кислотного состава в стволе скважины и закачку горячей кислоты в пласт, отличающийся тем, что на колонне насосно-компрессорных труб в скважину спускают индукционный нагреватель с турбулизатором потока в его верхней части и датчиком температуры в его нижней части с функцией передачи данных по температуре окружающей среды по силовому кабелю электропитания нагревателя на станцию управления процессом закачки, индукционный нагреватель располагают над пластом для поддержания температуры кислотного состава на необходимом уровне путем регулирования мощности индукционного нагревателя и объемного расхода кислотного состава.



 

Похожие патенты:

Изобретение относится к нефтедобывающей области. Технический результат - комплексное воздействие на околоскважинную зону продуктивного пласта, улучшающее фильтрационные и гидродинамические характеристики околоскважинной зоны, существенное увеличение проницаемости пласта и дебита скважины.
Изобретение относится к нефтедобывающей промышленности. Технический результат - интенсификация добычи нефти из скважин, эксплуатирующих карбонатные пласты с вязкостью нефти в пластовых условиях от 10 до 300 мПа*с, пластовой температурой до 40 °С и пластовым давлением не более 6 МПа, расстоянием до водонефтяного контакта не менее 4 м, улучшение фильтрационно-емкостных свойств и увеличение глубины и площади каналов растворения, повышение дебита.

Изобретение относится к нефтедобывающей промышленности, в частности к способам воздействия на призабойную зону пласта, сложенного карбонатными породами или терригенными породами с содержанием карбонатов более 15%. Технический результат - повышение эффективности большеобъемной селективной кислотной обработки (БСКО) скважин в карбонатных коллекторах обработки, создание разветвленной сети флюидопроводящих каналов в виде червоточины по всей перфорированной толщине пласта, предотвращение формирования и разрушение сладж-комплексов.

Изобретение относится к способам интенсификации добычи нефти из продуктивных пластов с применением селективных кислотных методов воздействия на призабойную зону пласта, сложенного карбонатными породами или терригенными породами с содержанием карбонатов более 15%. Технический результат - повышение эффективности большеобъемной селективной кислотной обработки БСКО призабойной зоны пласта, создание разветвленной сети флюидопроводящих каналов в виде червоточины по всей перфорированной толщине пласта, совместимость кислотного состава с пластовыми флюидами, предотвращение формирования и разрушения сладж-комплексов.
Изобретение относится к нефтедобывающей промышленности, в частности к заканчиванию и интенсификации наклонно-направленной скважины, пробуренной на карбонатные коллектора малой толщины вблизи водонасыщенного пласта, а также при проведении кислотных обработок при текущем и капитальном ремонте скважины. Способ включает вскрытие бурением продуктивного пласта, спуск эксплуатационной колонны, цементирование заколонного пространства, спуск в скважину компоновки насосно-компрессорных труб с гидромеханическим прокалывающим перфоратором.

Изобретение относится к нефтяной промышленности. Технический результат - снижение негативного воздействия кислоты на эксплуатационную колонну и подземное оборудование, исключение загрязнения окружающей среды из-за излива на устье скважины кислоты при монтаже и демонтаже оборудования на устье скважины с одновременным сокращением затрат на реализацию способа и снижением продолжительности процесса обработки призабойной зоны добывающей скважины.

Группа изобретений относится к способам применения гелеобразующих текучих сред для кислотной обработки пласта. Технический результат – получение эффективного отклоняющего агента для кислотных обработок при умеренных и повышенных температурах с возможностью уменьшения вязкости геелеобразующей текучей среды со временем при температуре пласта для легкой очистки.

Группа изобретений относится к нефтедобывающей промышленности и, в частности к составам для кислотной обработки призабойной зоны скважин. Технический результат – повышение эффективности кислотной обработки терригенного коллектора за счет замедления скорости реакции с породой при пластовой температуре, низких значений поверхностного натяжения на границе с пластовыми углеводородами, низкой скорости коррозии, предотвращения образования стойких нефкислотных эмульсий.

Изобретение относится к нефтяной промышленности. Технический результат - снижение негативного воздействия кислоты на эксплуатационную колонну и подземное оборудование, исключение загрязнения окружающей среды из-за излива на устье скважины кислоты при монтаже и демонтаже оборудования на устье скважины с одновременным сокращением затрат на реализацию способа и снижением продолжительности процесса обработки призабойной зоны добывающей скважины.

Изобретение относится к нефтедобывающей промышленности и, в частности, к способам интенсификации добычи нефти из продуктивных карбонатных пластов, вскрытых скважинами с открытыми горизонтальными стволами. Технический результат - повышения эффективности и качества кислотной обработки открытого горизонтального ствола, а также исключение излива кислоты на устье скважины и повышение техники безопасности проведения работ с кислотой, сокращение длительности обработки.

Изобретение относится к нефтегазодобывающей промышленности, а именно к термодинамическим способами и устройствам для воздействия на призабойную зону скважины при помощи электронагревателей для интенсификации добычи нефти.Термодинамический способ воздействия на призабойную зону скважины и устройство для его осуществления, включающие спуск на колонне труб в скважину установленных последовательно гидравлического забойного двигателя, мультипликатора, генератора электрического тока и нагревательного элемента, располагаемого в интервале нагрева скважины, прокачку жидкости через двигатель, преобразующий энергию потока жидкости при прохождении жидкости в его внутренних полостях с выходом наружу через промывочные окна в механическую энергию вращения своего ротора, скорость которого изменяется мультипликатором для передачи ротору генератора, вырабатывающего электрический ток для генерации тепловой энергии нагревательным элементом.
Наверх