Способ удаления жидкости из скважин и пзп гидропневматическим свабированием

Изобретение относится к разработке нефтяных, газовых и газоконденсатных месторождений, а именно к способу удаления жидкости, накопленной в процессе эксплуатации в призабойной зоне пласта. Для осуществления способа удаления накопленной или закачанной жидкости из призабойной зоны пласта - ПЗП и ствола скважины отсекают поршнем присутствующую в насосно-компрессорной трубе - НКТ накопленную или закачанную жидкость. Вытесняют на поверхность указанную жидкость поршнем и осуществляют технологический отстой скважины в целях восстановления уровня в стволе скважины за счет притока жидкости из ПЗП. В качестве поршня используют столб газожидкостной смеси - ГЖС, сформированный в НКТ подачей ГЖС с поверхности через межтрубное пространство и башмак НКТ. Столб ГЖС вытесняют на поверхность вместе с отсеченной жидкостью компримированным газом, подаваемым в межтрубное пространство. Достигается технический результат - обеспечение возможности вытеснения скважинной жидкости поршнем, представляющим собой столб ГЖС, продавливаемым компримированным газом. 1 з.п. ф-лы, 6 ил.

 

Изобретение относится к разработке нефтяных, газовых и газоконденсатных месторождений, а именно к способу удаления жидкости, накопленной в процессе эксплуатации в призабойной зоне пласта - ПЗП и стволе скважины, или жидкости, закачанной в технологическом процессе, например жидкости глушения, продуктов реакции соляно-кислотной обработки и пр.

Наиболее близок к предлагаемому способ добычи нефти по патенту РФ №2268354 (оп. 20.01.2006), включающий периодическую откачку нефти, отличающийся тем, что откачку нефти производят свабированием с изливом нефти в передвижную емкость, свабирование ведут с перепуском газа из пространства над свабом в межтрубное пространство скважины, при этом скорость снижения уровня жидкости в скважине поддерживают не более скорости, при которой на забое создается давление, меньшее давления разгазирования нефти.

Способ-прототип недостаточно эффективен, надежен и экологически безопасен. В частности, способ-прототип не может быть применен на скважинах, где внутренняя поверхность насосно-компрессорной трубы - НКТ имеет технологические сужения (опрессовочные седла, солевые и АСПО отложения и т.п.); на скважинах, имеющих наклонный или горизонтальный ствол; на глубоких скважинах более 3.000 метров вследствие значительного времени подъема сваба; неприменим на газовых и газо-конденсатных скважинах ввиду специфики их эксплуатации. Коэффициент полезного действия - КПД способа-прототипа низок из-за значительных утечек поднимаемой жидкости между свабом - поршнем и внутренней поверхностью НКТ, что влечет за собой долгосрочность процесса свабирования.

Недостаточная надежность способа-прототипа связана с вероятностью аварий вследствие заклинивания сваба - поршня и обрыва троса. Также способ-прототип не относится к экологически безопасным ввиду возможности утечек через сальниковое устройство троса.

Решаемая задача и ожидаемый технический результат заключаются в разработке высокоэффективного, надежного, безаварийного и экологически безопасного способа подъема жидкости с забоя на поверхность на любых скважинах: нефтяных, газовых, газо-конденсатных; возможно, имеющих наклонные или горизонтальные участки стволов, включая глубокие скважины более 3.000 метров, за счет обеспечения подъема и удаления жидкости, накопленной в процессе эксплуатации в ПЗП и стволе скважины, или жидкости, закачанной в технологическом процессе, без применения какого-либо забойного оборудования и со 100%-ным КПД благодаря отсутствию утечек поднимаемой и удаляемой жидкости. Технический результат заключается в обеспечении условий функционирования в предлагаемой совокупности операций газо-жидкостной смеси - ГЖС - в качестве поршня, вытесняющего на поверхность жидкость, накопленную в процессе эксплуатации в ПЗП и стволе скважины, или жидкость, закачанную в технологическом процессе, например, жидкость глушения.

Поставленная задача решается тем, что предлагаемый способ удаления накопленной или закачанной жидкости из призабойной зоны пласта - ПЗП и ствола скважины, включающий отсечение поршнем присутствующей в насосно-компрессорной трубе - НКТ накопленной или закачанной жидкости, вытеснение на поверхность указанной жидкости поршнем и технологический отстой скважины в целях восстановления уровня в стволе скважины за счет притока жидкости из ПЗП, отличается тем, что в качестве поршня используют столб газо-жидкостной смеси - ГЖС, сформированный в НКТ подачей ГЖС с поверхности через межтрубное пространство и «башмак» НКТ, после чего столб ГЖС вытесняют на поверхность вместе с отсеченной жидкостью компримированным газом, подаваемым в межтрубное пространство.

Используют мелкодисперсную структурированную ГЖС, предпочтительно получаемую способом по патенту РФ №2553105.

Предлагаемый способ удаления жидкости из скважин и ПЗП гидропневматическим свабированием иллюстрируется фигурами 1-6 и осуществляется следующей последовательностью операций.

1. К межтрубному пространству скважины с накопленной или ранее закачанной жидкостью (например, жидкостью глушения) подсоединяют нагнетательную линию 1, а к выходу НКТ - выкидную линию 2 на утилизацию удаляемой накопленной или ранее закачанной жидкости - фиг. 1; здесь и на всех прочих фигурах (кроме фиг. 5) положение накопленной или ранее закачанной жидкости в НКТ и межтрубном пространстве скважины показано светло-серым цветом.

2. В нагнетательную линию закачивают расчетный объем мелкодисперсной структурированной ГЖС (примерно равный объему НКТ) - фиг. 2, где направление закачки ГЖС показано темно-серой стрелкой. На фиг. 2 и всех прочих фигурах (кроме фиг. 1 и фиг. 6) положение ГЖС в НКТ и межтрубном пространстве скважины показано темно-серым цветом.

3. Продавливают закачанный в межтрубное пространство объем ГЖС через «башмак» НКТ во внутреннюю полость НКТ компримированным газом, например, азотом, тем самым формируя в НКТ столб ГЖС, отсекающий в НКТ объем поднимаемой жидкости, расположенный выше сформированного столба ГЖС - фиг. 3, где направление закачки компримированного газа показано белой стрелкой. На фиг. 3 и последующих фиг. 4-6 положение компримированного газа в НКТ и межтрубном пространстве скважины показано белым цветом.

4. Продолжают закачивать в межтрубное пространство компримированный газ, что приводит к вытеснению из НКТ на поверхность удаляемой скважинной жидкости посредством сформированного в НКТ столба ГЖС (выполняющего роль поршня) - фиг. 4, где направление закачки компримированного газа показано белой стрелкой (тем же цветом показано и положение компримированного газа в межтрубном пространстве и НКТ), а направление вывода на утилизацию удаляемой накопленной или ранее закачанной жидкости показано светло-серой стрелкой (тем же цветом показано и положение удаляемой жидкости на фиг. 4 и прочих фигурах).

5. Дальнейшая закачка в межтрубное пространство компримированного газа приводит в конечном итоге к вытеснению из НКТ на поверхность - вслед за удаленной скважинной жидкостью - столба ГЖС (выполнявшего роль поршня) - фиг. 5, где направление закачки компримированного газа в межтрубное пространство показано белой стрелкой (также белым цветом показано и положение компримированного газа на фиг. 3-6), а направление вывода из НКТ ГЖС - темно-серой стрелкой (тем же цветом показано и положение ГЖС на фиг. 2-5).

6. Останавливают закачку компримированного газа в межтрубное пространство и открывают скважину для сброса давления и последующего набора уровня в стволе (межтрубном пространстве и НКТ) за счет притока жидкости из ПЗП - фиг. 6, где направления сброса давления (сброса закачанного ранее компримированного газа из межтрубного пространства и из НКТ показаны белыми стрелками (также белым цветом показано и положение компримированного газа на фиг. 3-6).

Описанные операции 1-6 повторяют до полного удаления накопленной жидкости или нежелательного флюида из ПЗП и ствола скважины.

ПРИМЕР КОКРЕТНОГО ОСУЩЕСТВЛЕНИЯ СПОСОБА

Нефтяная скважина заглушена после проведения капитального ремонта.

Геолого-техническая характеристика:

- искусственный забой 2791,6 м;

- эксплуатационная колонна 168 мм;

- толщина стенок э/колонны 12,06 мм;

- интервал перфорации 2677-2681,6 м;

- пластовое давление 8,42 МПа;

- лифт: НКТ 73 мм с оснасткой под газлифт;

- глубина спуска лифта 2694,3 м;

- статический уровень 1740 м.

Оборудование для проведения технологического процесса

- насосный агрегат АЦ-32;

- азотный компрессор СДА-20/251;

- вставное устьевое оборудование для путевого генерирования газожидкостной смеси (ГЖС);

- доливная емкость с водным раствором ПАВ 0,3%;

- приемная емкость отработанной жидкости.

Технологический процесс

- смонтировали и опрессовали нагнетательную линию с вставным устьевым оборудованием и подбили ее к межтрубному пространству;

- смонтировали и обвязали с приемной емкостью выкидную линию из НКТ;

- открыли находящуюся на устьевой арматуре центральную и затрубную задвижки;

- при работающем компрессоре и насосном агрегате с подачей 2,5 л/с закачали 8 м3 рабочей ГЖС;

параметры давления закачки (начальное, рабочее и конечное соответственно) составили:

Рнач=7,0 МПа, Рраб=4,0 Мпа, Ркон=2,5 Мпа;

- остановили насосный агрегат;

- продавили компримированным азотом пачку закачанной в межтрубное пространство ГЖС через «башмак» в НКТ, тем самым формируя в НКТ столб ГЖС, отсекающий в НКТ объем поднимаемой скважинной жидкости, расположенный выше сформированного столба ГЖС;

- указанное продавливание компримированным азотом вели до выхода ГЖС из выкидной линии и прекращения выноса жидкой фазы скважинной жидкости;

- отобранная проба представляла собой светлую полупрозрачную жидкость. Предварительно: жидкость глушения.

Далее выполняли повторение указанных выше операций:

- при работающем компрессоре и насосном агрегате с подачей 2,5 л/с закачали 8 м3 ГЖС;

параметры давления закачки составили:

Рнач=3,0 МПа, Рраб=3,0 МПа, Ркон=3,5 МПа;

- остановили насосный агрегат;

- продавили пачку ГЖС компримированным азотом до выхода ее из выкидной линии в приемную емкость.

Выход скважинной жидкости по трубному пространству НКТ в приемную емкость при работе компрессорной установки продолжался в течение двух часов; первые 40 минут скважинная жидкость выходила импульсно, затем - стабильно, в полную трубу.

- отобранная проба представляла собой мутноватую полупрозрачную жидкость с 5 мм черной пленки на поверхности и характерным запахом нефтяного газа. Предварительно: нефть и жидкость глушения с пластовой водой;

- остановили закачку компримированного азота на 4 часа для накопления притока технологической и пластовой жидкости из ПЗП в стволе скважины, для чего открыли в атмосферу нагнетательную и выкидную линии при открытой центральной и затрубной задвижках, обеспечивая сброс давления и последующий набор уровня в стволе (межтрубном пространстве) и НКТ за счет притока жидкости из ПЗП.

Далее выполняли третий повтор указанных выше операций:

- при открытых затрубной и центральной задвижках при работающем компрессоре и насосном агрегате с подачей 2,5 л/с закачали 8 м3 ГЖС;

параметры давления закачки ГЖС:

Рнач=2,3 МПа, Рраб=5,0 МПа, Ркон=3,5 МПа;

- остановили насосный агрегат;

- продавили пачку ГЖС компримированным азотом до выхода ее из выкидной линии в приемную емкость вместе с удаляемой скважинной жидкостью Извлечение скважинной жидкости через НКТ в приемную емкость компримированным азотом при открытых затрубной и центральной задвижках продолжали непрерывно в течение 6 часов. Характер выноса скважинной жидкости оставался стабильным, что свидетельствует о нормальной работе скважины в режиме газлифтной эксплуатации.

Были взяты несколько проб удаленной из скважины жидкости. Все пробы на объема состояли из жидкости темного цвета со светлым отстоем на дне и характерным запахом нефтяного газа. Предварительно: нефть и пластовая вода.

Объем извлеченной из скважины жидкости за весь технологический процесс составил 54 м3.

После демонтажа вставного устьевого оборудования и обвязки устьевой арматуры нагнетательной и приемной линиями скважина была введена в эксплуатацию газлифтным способом.

Таким образом, эффективность способа обеспечивается тем, что в предлагаемой совокупности операций ГЖС функционирует в качестве поршня, вытесняющего на поверхность жидкость, накопленную в процессе эксплуатации в ПЗП и стволе скважины, или жидкость, закачанную в технологическом процессе, например, жидкость глушения.

Предлагаемый способ высокоэффективен, надежен и экологически безопасен, так как не подвержен авариям. Применим для подъема жидкости с забоя на поверхность на любых скважинах: нефтяных, газовых, газо-конденсатных; возможно, имеющих наклонные или горизонтальные участки стволов, включая глубокие скважины более 3.000 метров, за счет обеспечения подъема и удаления жидкости, накопленной в процессе эксплуатации в ПЗП и стволе скважины, или жидкости, закачанной в технологическом процессе, без применения какого-либо забойного оборудования и со 100%-ным КПД благодаря отсутствию утечек поднимаемой и удаляемой жидкости.

1. Способ удаления накопленной или закачанной жидкости из призабойной зоны пласта - ПЗП и ствола скважины, включающий отсечение поршнем присутствующей в насосно-компрессорной трубе - НКТ накопленной или закачанной жидкости, вытеснение на поверхность указанной жидкости поршнем и технологический отстой скважины в целях восстановления уровня в стволе скважины за счет притока жидкости из ПЗП, отличающийся тем, что в качестве поршня используют столб газожидкостной смеси - ГЖС, сформированный в НКТ подачей ГЖС с поверхности через межтрубное пространство и башмак НКТ, после чего столб ГЖС вытесняют на поверхность вместе с отсеченной жидкостью компримированным газом, подаваемым в межтрубное пространство.

2. Способ по п. 1, отличающийся тем, что используют мелкодисперсную структурированную ГЖС.



 

Похожие патенты:

Изобретение относится к нефтедобывающей промышленности и может быть использовано для восстановления/увеличения продуктивности добывающих и нагнетательных скважин. Способ гидроимпульсной имплозионной обработки скважин путем воздействия на призабойную зону пласта с использованием эффекта имплозии включает спуск в скважину имплозионного устройства на насосно-компрессорных трубах, содержащего имплозионную камеру с расширенной частью, концентраторы давления, плунжер и клапан.

Изобретение относится к нефтегазодобывающей промышленности и предназначено для разработки газонефтяной залежи, подстилаемой подошвенной водой. Технический результат - повышение нефтеотдачи и эффективности разработки газонефтяной залежи за счет полного охвата нефтенасыщенного продуктивного пласта вытесняющей водой, а также исключения потерь нефти в газовой части залежи.

Группа изобретений относится к области нефтедобывающей промышленности, а именно к пороховым генераторам давления, предназначенным для обработки продуктивного пласта для его интенсификации. Технический результат - повышение эффективности обработки за счет возможности регулирования поверхности горения зарядов и величины импульса давления, а также повышение стабильности работы устройства.

Изобретение относится к устройствам для вскрытия и обработки продуктивного пласта и может быть использовано для повышения производительности нефтяных скважин. Технический результат - повышение эффективности работы устройства за счет оптимизации открытия запорного элемента при упрощении его конструкции.

Изобретение относится к области эксплуатации скважин, в частности обработки и освоения при их сооружении или ремонте, и может быть использовано для повышения эффективности добычи трудноизвлекаемых запасов углеводородов в сложных геолого-технологических условиях. Техническим результатом изобретения является увеличение амплитуды периодических импульсов как при депрессии, так и репрессии на пласт, повышение надежности устройства в сложных геолого-технологических условиях и обеспечение возможности обработки также неоднородных низкопроницаемых коллекторов.

Изобретение относится к нефтегазодобывающей промышленности, в частности к добыче нефти из продуктивных низкопроницаемых пластов. Техническим результатом является повышение содержания насыщенных углеводородов добываемой продукции и увеличение коэффициента нефтеизвлечения за счет термического воздействия на призабойную зону пласта.

Группа изобретений относится к нефтегазовой промышленности и может быть использована для добычи высокотехнологичной нефти из нефтекерогеносодержащих пластов сланцевых формаций без использования гидравлического разрыва пласта, а также для добычи природных битумов, тяжелых и высоковязких нефтей. Технический результат - повышение нефтеотдачи пластов за счет формирования в околоскважинной зоне высокопроницаемой реторты с увеличением ее объема по мере отбора нефти.

Группа изобретений относится к нефтегазовой промышленности и может быть использована для повышения эффективности добычи углеводородов из нефтекерогеносодержащих пластов сланцевых формаций без использования гидравлического разрыва пласта, а также для добычи природных битумов, тяжелых и высоковязких нефтей.

Изобретение относится к области эксплуатации скважин, в частности обработке и освоения при их сооружении или ремонте и может быть использовано для повышения эффективности добычи трудноизвлекаемых запасов углеводородов в сложных геолого-технологических условиях. Способ гидродинамического воздействия на пласт включает спуск на забой компоновки в виде колонны труб, корпуса с центральным стволом подвода активной среды, хвостовика с двумя верхним и нижним пакерами.

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано при эксплуатации скважин, оборудованных установками скважинных штанговых насосов (УСШН). Для осуществления способа добычи нефти штанговыми насосными установками выполняют циклическую принудительную откачку газа из затрубного пространства.
Service Desk для клининга
Наверх