Способ определения долговечности оптических волокон

Способ определения долговечности оптического волокна состоит в том, что отбирают для испытаний образцы оптических волокон из одной партии. Часть образцов подвергают выдерживанию в климатической камере при различных значениях повышенной температуры и определяют зависимость усилия снятия покрытия, разрывной прочности и коэффициента затухания образцов от времени выдержки для каждого значения температуры. Другую часть образцов подвергают выдерживанию в климатической камере при отрицательной температуре и определяют зависимость усилия снятия покрытия, разрывной прочности и коэффициента затухания образцов от времени выдержки при отрицательной температуре. Полученные зависимости экстраполируют до значений, соответствующих предельно допустимому значению для каждого упомянутого параметра, получают зависимость долговечности оптического волокна от температуры и с помощью аппроксимирующей функции определяют долговечность оптического волокна при каждом значении температуры. Технический результат - повышение точности определения долговечности оптического волокна при сокращении времени испытаний. 3 з.п. ф-лы, 1 табл.

 

Область техники, к которой относится изобретение

Изобретение относится к испытательной технике, в частности к испытаниям оптических волокон, более конкретно, к способу определения долговечности оптических волокон.

Уровень техники

Известен способ определения надежности оптического волокна, раскрытый в Техническом отчете Международной электротехнической комиссии IEC TR 62048 “Optical fibres – Reliability – Power law theory”. В данном известном способе оптическое волокно рассматривается в виде простой кварцевой нити, т.е. не учитывается наличие защитных покрытий, которые оказывают существенное влияние на характеристики волокна, как в положительном, так и отрицательном плане. Это является существенным недостатком известного способа. Следующим серьезным недостатком этого известного способа является то, что определение долговечности осуществляется только с точки зрения механической прочности, в то время как с точки зрения эксплуатации в составе оптического кабеля и обеспечения работоспособности систем передачи информации в качестве критерия отказа определяющим являются оптические потери (коэффициент затухания), который в известном способе не учитывается.

Сущность изобретения

Изобретение решает задачу повышения точности ускоренной оценки долговечности оптического волокна.

Изобретением обеспечиваются следующие технические результаты: повышение точности определения долговечности (срока службы) оптического волокна при сокращении времени испытаний.

Указанные технические результаты достигаются тем, что способ определения долговечности оптического волокна состоит в том, что

- отбирают для испытаний образцы оптических волокон из одной партии;

- часть образцов подвергают испытанию по определению усталостной прочности оптических волокон, и, если значение параметра усталостной прочности, определенное в процессе испытаний, составляет не менее 20, то переходят к последующим испытаниям оставшихся образцов;

- часть образцов подвергают выдерживанию в климатической камере при различных значениях повышенной температуры и определяют значение времени, при котором усилие снятия покрытия, разрывной прочности и коэффициента затухания образцов достигнут критических значений или зависимость указанных параметров от времени выдержки для каждого значения температуры;

- другую часть образцов подвергают выдерживанию в климатической камере при отрицательной температуре и определяют значение времени, при котором усилие снятия покрытия, разрывной прочности и коэффициента затухания образцов достигнут критических значений или зависимость указанных параметров от времени выдержки при отрицательной температуре;

- в случае, если в процессе выдерживания при различных значениях температуры параметры усилия снятия покрытия, разрывной прочности и коэффициента затухания оптических волокон достигли критических значений, то полученные при испытаниях значения времени до достижения таких критических значений используют для построения зависимости срока службы от температуры;

- если в процессе выдерживания при различных значениях температуры параметры усилия снятия покрытия, разрывной прочности и коэффициента затухания оптических волокон не достигли критических значений, полученные в результате испытаний зависимости значений указанных контролируемых параметров от времени выдержки экстраполируют до значений, соответствующих предельно допустимому значению для каждого упомянутого параметра;

- полученные в результате экстраполяции значения времени до достижения критических значений контролируемых параметров используют для построения зависимости срока службы от температуры;

- из полученной зависимости определяют долговечность оптического волокна при каждом значении температуры.

Указанные технические результаты достигаются также тем, что часть образцов подвергают выдерживанию в климатической камере при следующих средних значениях температуры 85оС, 95оС, 100 оС и 110оС.

Указанные технические результаты достигаются также тем, что часть образцов подвергают выдерживанию в климатической камере при среднем значении отрицательной температуры минус 60 оС.

Указанные технические результаты достигаются также тем, что время выдерживания образцов при повышенной температуре составляет не менее 2000 часов, а при отрицательной не менее 500 часов.

Отличительной особенностью изобретения является то, что срок эксплуатации оптического волокна (долговечность) определяют расчетно-экспериментальным методом путем установления зависимости параметров-критериев годности от времени выдержки образцов при повышенной и пониженной температурах эксплуатации.

Осуществление изобретения

Основным функциональным элементом оптического кабеля является оптическое волокно, состоящее из кварцевого световода с защитным покрытием (покрытиями), по которому осуществляется передача сигнала. Необратимое увеличение затухания сигнала сверх установленных в нормативной документации значений считается предельным состоянием оптического кабеля и приводит к отказам системы, в которой он применяется. Таким образом, надежность оптического волокна определяет надежность всей системы передачи информации. Поэтому оценка параметров надежности оптического волокна на стадии его разработки, освоения производства или в случае внесения изменений в технологию изготовления очень важна.

Оценку соответствия оптического волокна требованию к сроку службы проводят в настоящем изобретении расчетно-экспериментальным методом путем определения зависимости параметров-критериев годности от времени выдержки при повышенной и пониженной температурах эксплуатации.

Учитывая общеизвестный факт, что существует зависимость параметров оптического волокна от температуры (в частности уменьшение продолжительности времени эксплуатации в результате термического старения материалов), которую можно описать некой функцией, для выявления такой зависимости проводят испытания при различных значениях температуры среды, выбранных таким образом, чтобы в максимально сжатые сроки определить значение времени, при котором усилие снятия покрытия, разрывной прочности и коэффициента затухания образцов достигнут критических значений или выявить тенденцию изменений параметров-критериев годности от времени.

Температурным испытаниям целесообразно подвергать только те изделия, которые прошли приемосдаточные испытания, в том числе проверку перемоткой с натяжением не менее 0,69 ГПа по ГОСТ Р МЭК 60793-1-30.

Способ определения долговечности оптического волокна состоит в том, что отбирают для испытаний образцы оптических волокон из одной партии. Для определения коэффициента затухания рекомендуемая длина образцов составляет не менее 1000м. Образцы, для контроля усилия снятия покрытия и разрывной прочности формируют в виде бухт диаметром не более 60 мм и не менее 45 мм.

Из образцов формируют испытательные группы, одну из которых подвергают испытанию по определению усталостной прочности оптических волокон по ГОСТ Р МЭК 60793-1-33, и, если значение параметра усталостной прочности, определенное в процессе испытаний, составляет не менее 20, то переходят к последующим испытаниям оставшихся образцов. Оставшиеся группы образцов подвергают выдерживанию в климатической камере при различных значениях повышенной температуры, например, при следующих средних значениях 85°С, 95°С 100°С и 110°С, или пониженной температуры со средним значением минус 60°С, с допустимым отклонением от указанных значений в обе стороны не более пяти градусов. Далее определяют значения времени, при котором усилие снятия покрытия, разрывной прочности и коэффициента затухания образцов достигнут критических значений или зависимость указанных параметров от времени выдержки для каждого значения температуры. Среднее время выдержки (в часах) для построения зависимостей целесообразно выбрать из следующего ряда: для повышенных температур - 500, 750, 1000, 1250, 1500, 1750 и 2000; для пониженной температуры - 100, 200, 300, 400, и 500. Отклонение от указанных средних значений выдержки целесообразно выбрать не более 5 часов в обе стороны. Общее время выдерживания образцов для выявления зависимости коэффициента затухания от времени при повышенной температуре составляет не менее 2000 часов, а при отрицательной не менее 500 часов.

Контроль коэффициента затухания в оптических волокнах проводят методом обратного рассеяния в соответствии с ГОСТ Р МЭК 60793-1-40. Длину волны оптического излучения, на которой проводят измерение коэффициента затухания, устанавливают в соответствии с рабочей длиной волны, указанной в нормативных документах. У одномодовых оптических волокон измерения проводят на всех рабочих длинах волн, установленных в нормативных документах, из перечня 1310, 1550 и 1625 нм. У многомодовых оптических волокон измерения проводят на длине волны 1300 нм.

Контроль усилия снятия защитного покрытия с оптических волокон проводят по ГОСТ Р МЭК 60793-1-32. Длина снятия защитного покрытия составляет 30+5 мм, скорость движения зажимов 500 мм/мин. Нормальным считается усилие снятия защитного покрытия, если его значение находится в диапазонах, Н:

- среднее — 1,0—5,0,

- пиковое — 1,0—8,9.

Контроль разрывной прочности проводят по ГОСТ Р МЭК 60793-1-31-2010. При этом нагружаемая часть образца должна быть не менее 0,5 м. Нормальным считается значение разрывной прочности не менее 3,8 ГПа.

В случае, если в процессе выдерживания при различных значениях температуры параметры усилия снятия покрытия, разрывной прочности и коэффициента затухания оптических волокон достигли критических значений, то полученные при испытаниях значения времени до достижения таких критических значений используют для построения зависимости срока службы от температуры.

Если в процессе выдерживания при различных значениях температуры параметры усилия снятия покрытия, разрывной прочности и коэффициента затухания оптических волокон не достигли критических значений, полученные в результате испытаний зависимости значений указанных контролируемых параметров от времени выдержки экстраполируют до значений, соответствующих предельно допустимому значению для каждого упомянутого параметра.

Полученные в результате экстраполяции значения времени до достижения критических значений контролируемых параметров (долговечность) используют для построения зависимости долговечности (срока службы) от температуры.

Полученные зависимости долговечности (срока службы) tкр от температуры Т аппроксимируют некоторой функцией tкр = F(T)
с учетом среднеквадратического отклонения у, рассчитанного в соответствии с (1).

Выбирать аппроксимирующую функцию tкр = F(T) можно таким образом, чтобы коэффициент детерминации R2, определяемый в соответствии с (2), был не менее 0,9.

(1)

(2)

где бi – значение параметра-критерия годности по результатам испытаний i-го образца;

бi(t) – значение параметра-критерия годности, полученное при аппроксимации i-го образца;

N – количество измерений;

ti – значение tкр, полученное при аппроксимации i-го образца;

ti(T) – значение tкр, в выявленной i-й зависимости

Mt – математическое ожидание.

С помощью полученных зависимостей определяют для любой требуемой рабочей температуры продолжительность эксплуатации оптического волокна до перехода в предельное состояние (долговечность).

Пример осуществления изобретения.

Образцы, у которых после выдержки при повышенной температуре определяют разрывную прочность и усилие снятия покрытия формируют в виде бухт диаметром не более 60 мм и иметь длину не менее 10 м каждый. Количество образцов, подвергаемых воздействию повышенной или пониженной температуры и дальнейшим механическим испытаниям, должно быть не менее 21 для каждого значения повышенной температуры и не менее 15 для пониженной температуры. С целью исключения влияния на аппроксимирующую функцию изменения затухания за счет перепада температур за начальную точку зависимости коэффициента затухания от времени выдержки принимают значение, измеренное после двух часов выдержки образца при заданной температуре.

Для испытаний формируют восемь групп образцов оптического волокна

Группу 1 составляют из 15 образцов длиной не менее 5 м каждый.

Образцы этой группы подвергают испытанию по определению усталостной прочности оптических волокон по ГОСТ Р МЭК 60793-1-33, и, если значение параметра усталостной прочности, определенное в процессе испытаний, составляет не менее 20, то переходят к последующим испытаниям оставшихся образцов.

Группы 2 и 3 составляют из образцов длиной не менее 10 м каждый, сформированных в виде бухт диаметром не более 60 мм и не менее 45 мм. Количество образцов должно быть не менее:

- в группе 2 — 84;

- в группе 3 — 15.

Группы 4 - 8 составляют из образцов оптического волокна длиной не менее 1000 м, намотанных на поставочную катушку или сформированных в виде бухт с внутренним диаметром не менее
250 мм. Количество испытываемых образцов в составе групп 4 - 8 определяют в зависимости от требуемой вероятности г, установленных в НД, в соответствии с таблицей 1.

Таблица 1 Количество испытуемых образцов в зависимости от вероятности г

Вероятность, г, % Количество испытуемых образцов
no шт.
90 — 96 3
97 — 98 4
99 10
99,5 20

Испытания проводят при температурах 85, 95, 100 и 110°С, если максимальная повышенная температура эксплуатации, установленная в документации на оптическое волокно составляет 85°С.

Испытанию при воздействии повышенной температуры окружающей среды по ГОСТ 20.57.406 (метод 201-1) подвергают образцы группы 2 и групп с 5 по 8.

Образцы группы 2 делят по подгруппам, подвергаемым воздействию одной из указанных температур. Образцы каждой подгруппы помещают в климатическую камеру, устанавливают в камере соответствующую температуру и выдерживают при этой температуре, последовательно вынимая по 3 образца из камеры через 500, 750, 1000, 1250, 1500, 1750 и 2000 часов от момента достижения в камере термического равновесия. У подвергнутых таким образом воздействию повышенной температуры образцов проверяют внешний вид и оптическую целостность, после чего определяют усилие снятия покрытия и разрывную прочность. Если измеренные средние значения указанных параметров не выходят за пределы указанных нормальных значений, с помощью полученных при испытаниях средних значений строят графики зависимости усилия снятия покрытия и разрывной прочности от времени выдержки. Должно быть получено 4 графика для усилия снятия покрытия и разрывной прочности - по одному для каждого значения температуры испытаний. Если среднее значение какого-либо контролируемого параметра вышло за пределы «нормального» в определенное значение времени испытаний, фиксируют это значение времени для дальнейшего его использования при построении зависимости срока службы от температуры.

Образцы групп с 5 по 8 помещают в климатическую камеру, при этом их концы выводят наружу. Устанавливают соответствующую температуру и выдерживают образцы при этой температуре в течение 2000 часов, осуществляя контроль коэффициента затухания с периодичностью (48+4) часа. С помощью полученных при испытаниях средних значений строят график зависимости коэффициента затухания от времени выдержки. Должно быть получено 4 графика - по одному для каждого значения температуры испытаний. Если значение измеренного коэффициента затухания вышло за пределы «нормального» (установленного в нормативной документации на испытуемое оптическое волокно) в определенное значение времени испытаний, фиксируют это значение времени для дальнейшего его использования при построении зависимости срока службы от температуры.

Полученные зависимости параметров - критериев годности можно экстраполировать до достижения предельно допустимых значений параметров, установленных в нормативной документации испытуемой партии оптического волокна, определив значение времени до достижения предельно допустимых значений.

Полученные в результате такой экстраполяции или в процессе испытаний значения времени до достижения предельно допустимых значений при разных температурах испытаний используют для построения зависимости долговечности (срока службы) оптического волокна от температуры.

Отличительной особенностью изобретения является использование комбинированного расчетно-экспериментального способа определения долговечности для повышения точности оценки при сокращении срока проведения испытаний. При этом способ позволяет проводить оценку долговечности по нескольким основным функциональным и эксплуатационным параметрам. С помощью получаемых расчетно-экспериментальных зависимостей определяют для любой требуемой рабочей температуры продолжительность эксплуатации оптического волокна до перехода в предельное состояние (до отказа).

1. Способ определения долговечности оптического волокна, состоящий в том, что

- отбирают для испытаний образцы оптических волокон из одной партии;

- часть образцов подвергают испытанию по определению усталостной прочности оптических волокон, и если значение параметра усталостной прочности, определенное в процессе испытаний, составляет не менее 20, то переходят к последующим испытаниям оставшихся образцов;

- часть образцов подвергают выдерживанию в климатической камере при различных значениях повышенной температуры и определяют значения времени, при которых усилие снятия покрытия, разрывной прочности и коэффициента затухания образцов достигнут критических значений или зависимость усилия снятия покрытия, разрывной прочности и коэффициента затухания образцов от времени выдержки для каждого значения температуры;

- другую часть образцов подвергают выдерживанию в климатической камере при отрицательной температуре и определяют зависимость усилия снятия покрытия, разрывной прочности и коэффициента затухания образцов от времени выдержки при отрицательной температуре;

- полученные зависимости значений усилия снятия покрытия, разрывной прочности и коэффициента затухания оптического волокна от времени выдержки экстраполируют до значений, соответствующих предельно допустимому (критическому) значению для каждого упомянутого параметра;

- полученные в результате такой экстраполяции или непосредственно в процессе испытаний значения времени до достижения критических значений при разных температурах испытаний используют для построения зависимости долговечности оптического волокна (времени до необратимого отказа) от температуры;

- с помощью соответствующей аппроксимирующей функции определяют долговечность оптического волокна при каждом значении температуры.

2. Способ по п.1, отличающийся тем, что часть образцов подвергают выдерживанию в климатической камере при следующих средних значениях температуры 85°С, 95°С, 100°С и 110°С.

3. Способ по п.1, отличающийся тем, что часть образцов подвергают выдерживанию в климатической камере при среднем значении отрицательной температуры минус 60°С.

4. Способ по п.1, отличающийся тем, что время выдерживания образцов при повышенной температуре составляет не менее 2000 часов, а при отрицательной не менее 500 часов.



 

Похожие патенты:

Изобретение относится к области оптического приборостроения и касается способа определения волновых аберраций оптической системы. При осуществлении способа направляют световой пучок с длиной волны λ на оптическую систему и измеряют распределение интенсивности светового пучка в различных плоскостях в пространстве изображений.

Изобретение относится к области контрольно-измерительной техники и касается стенда измерения параметров многоэлементных фотоприемных устройств (МФПУ). Стенд содержит два источника излучения, подключенные к блоку управления температурным режимом, посадочное место для установки контролируемого МФПУ, блок регистрации и обработки сигналов с персональным компьютером и соединенными между собой блоком подключения и модулем сопряжения, а также формирователь рабочих напряжений.

Изобретение относится к средствам испытания оптических кабелей. Способ состоит том, что проверяют стойкость образцов оптического кабеля к воздействию механических нагрузок, имитирующих условия прокладки кабели.

Изобретение относится к области измерительной техники и касается устройства для градуировки фотоприемников по абсолютной мощности потока излучения. Устройство содержит излучатель, нейтральный фильтр, два поляризатора, транслятор углового положения, двухосевой транслятор, измерительный фотоприемник, градуируемый фотоприемник и абсолютный криогенный радиометр.

Способ измерения толщины офтальмологической линзы включает обеспечение формирующего оптического элемента, имеющего выпукло-изогнутую верхнюю поверхность; записывание эталонного значения интенсивности в указанный формирующий оптический элемент; формирование офтальмологической линзы, имеющей светопоглощающий компонент, на указанной выпукло-изогнутой верхней поверхности формирующего оптического элемента; пропускание света через указанную офтальмологическую линзу, после чего указанный светопоглощающий компонент поглощает часть указанного света при прохождении указанным светом через офтальмологическую линзу; применение света, прошедшего через офтальмологическую линзу, для создания цифрового изображения для указанной офтальмологической линзы, имеющего данные пиксельной интенсивности, которые соответствуют форме указанной офтальмологической линзы; применение информации об указанном свете перед его пропусканием через указанную офтальмологическую линзу, указанном светопоглощающем компоненте указанной офтальмологической линзы, эталонном значении интенсивности, записанном в указанном формирующем оптическом элементе, и указанных данных пиксельной интенсивности для вычисления профиля толщины указанной офтальмологической линзы.

Продукт для определения оптических параметров линзы очков, содержащий один или более материальных компьютерочитаемых некратковременных носителей для хранения, содержит исполняемые компьютером инструкции, выполненные с возможностью, при их исполнении по меньшей мере одним компьютерным процессором, обеспечивать для компьютерного процессора возможность побуждать вычислительное устройство: обрабатывать по меньшей мере одно захваченное изображение, захваченное камерой, отражения вспышки на линзе очков, которое содержит первое и второе отражения вспышки на передней и задней поверхностях линзы, и определять оптические параметры линзы на основании относительного угла между плоскостью линзы и плоскостью камеры и на основании смещения между указанными первым и вторым отражениями в захваченном изображении.

Использование: для определения оптических свойств объемно-рассеивающей среды. Сущность изобретения заключается в том, что система определения оптических свойств объемно-рассеивающей среды с использованием диффузной рефлектометрии, содержащая: источник излучения, выполненный с возможностью обеспечения излучения к объемно-рассеивающей среде в области ввода излучения; оптическую приемную систему, выполненную с возможностью приема излучения, прошедшего через объемно-рассеивающую среду, в области приема излучения для получения распределения интенсивности излучения, при этом оптическая приемная система содержит массив ЖК(жидкокристаллических)-ячеек, массив микролинз и массив фотодетекторов, которые совмещены так, что каждой ЖК-ячейке из массива ЖК-ячеек соответствует соответствующая микролинза из массива микролинз и соответствующий фотодетектор из массива фотодетекторов; разделитель, отделяющий область ввода излучения от области приема излучения и выполненный с возможностью предотвращения попадания излучения, частично отраженного от поверхности объемно-рассеивающей среды в области ввода излучения, в область приема излучения оптической приемной системы; блок управления, выполненный с возможностью управления оптической приемной системой, во время обеспечения излучения к объемно-рассеивающей среде в области ввода излучения, для побуждения оптической приемной системы к последовательному открытию каждой ЖК-ячейки с одновременным приемом излучения, прошедшего через соответствующую открытую ЖК-ячейку и микролинзу, соответствующим фотодетектором из массива фотодетекторов, чтобы получить упомянутое распределение интенсивности излучения; и блок обработки данных, выполненный с возможностью определения оптических свойств объемно-рассеивающей среды на основе распределения интенсивности излучения.

Изобретение относится к испытательной технике. Способ состоит в измерении частот вынужденного рассеяния Мандельштама-Бриллюэна образцов оптического волокна в свободном состоянии и в составе оптического кабеля, на основе которых рассчитывают степень деформации оптического волокна в кабеле и определяют срок сохраняемости.

Изобретение относится к области голографии и касается способа экспресс-анализа величины динамического диапазона фазового фотоотклика голографического материала. Способ включает в себя формирование фазового фотоотклика среды при записи голограммы пучками с гауссовым распределением интенсивности.

Изобретение относится к технической физике и может быть использовано при проведении летных (натурных) испытаний авиационных оптико-электронных систем и их квалиметрии на основе анализа и обработки изображений наземных штриховых мир видимого диапазона. Способ определения линейного разрешения на местности оптико-электронной системы летательного аппарата, в соответствии с которым на земле вдоль и поперек траектории полета летательного аппарата, оборудованного оптико-электронной системой, раскладывают и с помощью колышков максимально растягивают по горизонтали полотна мир, представляющие собой темные прямоугольные полотна из нерастяжимой прорезиненной ткани с нанесенными абсолютно белыми штрихами.

Изобретение относится к средствам испытания оптических кабелей. Способ состоит том, что проверяют стойкость образцов оптического кабеля к воздействию механических нагрузок, имитирующих условия прокладки кабели.
Наверх