Способ определения тепловых свойств материалов

Изобретение относится к измерительной технике, в частности к способам определения теплопроводности, температуропроводности и теплоемкости материалов, например образцов горных пород. Заявлен способ определения теплопроводности и температуропроводности материалов, в котором используется режим постоянного нагрева, позволяющий исследовать образцы в виде цилиндров с длиной, равной или превышающей диаметр образца. Новым является то, что первое эталонное тело, контактирующее с плоским источником тепла, является изолятором тепла и в системе тел реализуется режим постоянного нагрева. Технический результат - повышение точности определения тепловых свойств исследуемых неоднородных по структуре образцов. 1 ил.

 

Изобретение относится к измерительной технике, в частности к способам определения тепловых свойств материалов, например образцов горных пород.

Известен способ определения температуропроводности материалов, основанный на так называемом «методе вспышки», согласно которому короткий импульс энергии нагревает внешнюю сторону плоскопараллельного образца. С помощью инфракрасного датчика измеряется температура на противоположной стороне этого образца.

В случае применения образца сравнения можно рассчитать удельную теплоемкость, а перемножив плотность, температуропроводность и теплоемкость, можно определить теплопроводность исследуемого образца. Метод вспышки является быстрым и бесконтактным способом определения тепловых характеристик однородных материалов небольших размеров (диаметром 12,7 мм, толщиной от 0,01 до 6 мм). Он реализован в качестве серийно выпускаемого фирмой NETZSCH прибора LFA 467 HyperFlash.

К недостаткам этого способа можно отнести малые размеры исследуемых образцов, что не позволяет определять тепловые свойства существенно неоднородных образцов горных пород, а также невозможность исследовать оптически прозрачные образцы материалов (минералы), когда световой поток «пробивает» образец. Кроме того, в данном способе не предусматривается моделирование горного и пластового давления, пластовой температуры, соответствующих условиям залегания горных пород.

Наиболее близким к предложенному способу по технической сущности (прототипом) является способ определения теплофизических свойств материалов [С.А.Николаев, А.Н.Саламатин, Н.Г.Николаева, а.с. 1332210 СССР, МКИ3G01N 25/18], в котором торцовые поверхности исследуемого образца в виде пластины контактируют с полуограниченными (с точки зрения затухания колебаний температуры) эталонными телами с равными тепловыми свойствами. В этой схеме с одномерным потоком тепла в плоскости контакта одного из полуограниченных тел с образцом задается периодический нагрев.

На базе теоретических исследований установившихся периодических температурных полей в системе тел, между которыми имеются термические контактные сопротивления, разработаны методики измерения тепло- и температуропроводности образцов горных пород с применением одного или двух датчиков температуры, размещенных в полуограниченных телах. В установке, реализующей вариант с одним датчиком (дифференциальной термопарой), последняя помещена в полуограниченном теле, контактирующем с противоположной от нагревателя плоскостью образца. Тепловые свойства вычисляются на основе информации об амплитуде и сдвиге фазы температурных колебаний при заданных параметрах теплового потока.

К недостаткам этого способа относится то, что тепловой поток, задаваемый в плоскости контакта одного из полуограниченных тел с образцом, является периодическим, то есть описывается периодической функцией. Последняя может быть представлена рядом Фурье, который представляет из себя бесконечную сумму постоянной составляющей теплового потока и различных его гармоник. В результате, замеренная температура в каком-либо поперечном сечении эталонных тел является суперпозицией температуры, порождаемой постоянной составляющей теплового потока и температур, являющихся проявлением его различных гармоник. Все это приводит к тому, что прежде чем использовать соответствующие методики расчета тепловых свойств, необходимо разложить полученный температурный сигнал на вышеуказанные составляющие. Сама по себе эта процедура является самостоятельной задачей и требует достаточно хорошей аппроксимации поведения температуры при постоянном тепловом потоке.

Отмеченное существенно усложняет методику обработки экспериментальных данных. Кроме того, с помощью прототипа нельзя измерить тепловые характеристики полноразмерных образцов горных пород (диаметр 30 мм, длина 30-40 мм), что требуется в тепловой петрофизике с учетом существенной неоднородности объектов исследования. Так, для получения достоверных значений тепловых параметров образцов горных пород (квазиоднородной среды) их продольный размер в направлении исследований должен на порядок превышать размер неоднородностей (пор или зерен) их структуры.

Целью изобретения является расширение функциональных возможностей за счет увеличения продольных размеров исследуемых образцов и повышения при этом точности определения тепловых свойств неоднородных по структуре образцов, а также упрощение обработки результатов измерений.

Поставленная цель достигается за счет того, что используется режим постоянного нагрева, позволяющий исследовать образцы в виде цилиндров с длиной, равной или превышающей диаметр образца.

Способ определения тепловых свойств материалов иллюстрируется следующими рисунками и таблицами, где:

- на фиг. 1 показан способ определения тепловых свойств материалов;

- в табл. 1 приведены исходные данные для вычислительных экспериментов.

Предлагаемое изобретение - способ для определения тепловых свойств (тепло-, температуропроводности и теплоемкости) материалов поясняется схемой, изображенной на фиг. 1.

Согласно этой схеме, исследуемый образец 2 в виде цилиндра с длиной, равной его диаметру d или несколько большей (1,3 d) его диаметра, контактирует по своим торцам с двумя эталонными телами 1 и 3, в виде цилиндров того же диаметра. В месте сопряжения эталона 1 и исследуемого образца 2 находится плоский источник тепла 4, обеспечивающий равномерный нагрев по всей поверхности сопряжения с исследуемым образцом 2. Эталонное тело 1 является изолятором тепла, т.е. его коэффициент теплопроводности λ пренебрежимо мал (с погрешностью, не превышающей погрешности измерений). В эталонном теле 3 вблизи его поверхности, контактирующей с исследуемым образцом 2, размещается датчик температуры (термопара) 5, а на противоположном конце эталонного тела 3 помещен датчик температуры 6. Величина эталона 3 выбирается из условия полуограниченности, т.е. тепловое возмущение, в процессе измерения, его свободной поверхности не достигает. Учитывая это, соотношение, определяющее длину эталона l3, может быть записано в виде l3 =, где – длина образца, а – параметр Фурье. Эта формула легко получается из задачи об определении температуры полуограниченного тела, если на его границе задан постоянный тепловой поток.

Способ определения тепловых свойств материалов осуществляется следующим образом. Между изолятором тепла 1 и исследуемым образцом 2 вставляется нагреватель 4, противоположная сторона исследуемого образца 2 приводится в контакт с эталонным телом 3. Вся система тел 1, 4, 2, 3 сжимается с помощью струбцины (на фиг. 1 не показана) и теплоизолируется с боковых поверхностей.

С помощью плоского источника тепла 4 в исследуемом образце 2 и эталонном теле 3 задается постоянный тепловой поток, мощность которого выбирается из условия (данное ограничение продиктовано техникой безопасности).

В процессе прогрева системы из исследуемого образца 2 и эталонного тела 3 с помощью датчика температуры 5 производится измерение температуры в эталонном теле 3. При этом датчик температуры 6 служит для контроля отсутствия теплового возмущения на торце эталонного тела 3, противоположного торцу, контактирующему с исследуемым образцом 2.

Искомые характеристики вычисляются по формулам, полученным из решения системы уравнений, определяющих одномерное температурное поле в контактирующих телах 2 и 3 (фиг. 1).

Здесь ti – температура в i-м теле; x – пространственная переменная;τ – время; L –длина исследуемого образца; ai, λi – температуропроводность и теплопроводность i–го тела; r0, S – радиус и площадь поперечного сечения контактирующих тел; t0 – температура окружающей среды; q(τ) – заданный тепловой поток от нагревателя, q(τ)=N/S; N – мощность нагревателя.

В системе (1) – (6) перейдем к безразмерным переменным вида:

; (7)

где =N0/S – характерная величина теплового потока, в рассматриваемом случае = q и Q = 1.

В результате получим:

Здесь A2=A, A3=1.

Система (7) – (12) полностью определяет температурное поле рассматриваемой системы тел.

Для решения системы (8) – (12) воспользуемся преобразованием Лапласа.

Обозначим

где s – комплексный параметр преобразования Лапласа.

Применяя преобразования Лапласа к системе (8) – (12) получаем:

где

Решая систему (14)–(17), нетрудно найти функции и . После несложных преобразований получаем:

Здесь

C точки зрения практического использования полученных выражений, целесообразно рассмотреть формулу (19), определяющую температурное поле в эталонном теле.

Это объясняется тем, что тепловые датчики размещаются в эталонах.

Так как , то выражение (19) в этом случае будет иметь вид

Последнюю формулу можно преобразовать к виду удобному для применения обратного преобразования Лапласа

Воспользуемся таблицей преобразований Лапласа, приведенной в работе [Карслоу Г., Егер Д. Теплопроводность твердых тел. М.: Наука.– 1964.–488 с.], согласно которой . Используя это выражение, получаем точную формулу для расчета постоянной составляющей температурного поля в эталонном теле при постоянном тепловом потоке:

где

.

Следует отметить тот факт, что отношение всегда меньше 1 и функция ierfc(z) быстро убывает с ростом аргумента, поэтому ряд (22) быстро сходится.

В качестве примера реализации предлагаемого способа определения тепловых свойств материалов приведены результаты вычислительных экспериментов, которые построены на алгоритме решения обратной задачи: определения тепловых свойств исследуемого образца по замерам температуры в эталонном теле. Этот алгоритм сводится к нахождению минимума функции двух переменных вида:

, (23)

где – координата датчика температуры, – безразмерные значения замеренной температуры; n – число замеров.

В качестве исследуемых веществ используем образец песчаника в виде цилиндра диаметром 30 мм и длиной 40 мм, а эталонного тела 3 – кварцевое стекло КВ.

На табл. 1 представлены исходные данные для вычислительных экспериментов. Время последнего замера 2 часа, при этом длина эталона, обеспечивающая выполнение условия полубесконечности, составляет 4.76*L.

Таблица 1

Исходные данные для вычислительных экспериментов

Обозначения параметров r0 L λ2 a 2 λ3 a 3 q
Размерность величин м Вт/(м⋅K) Вт/(м⋅K) Вт/(м2⋅°С)
Значения величин 0,015 0,04 2,6 1,85⋅10-6 1,35 8,4⋅10-7 33,8
Обозначение параметров N,вт τ0c θ0 Λ А F 0 -
Значения величин 0,688 1905 973 28,8°С 1,9259 2,2024 3.78

Здесь , , где – время последнего замера.

Используя эти данные, были получены следующие результаты:

Λ = 1,95313, А = 2,22092,

которые определяют искомые тепловые характеристики исследуемого образца:

λ2 = 2,63673 Вт/(мK), а2 = 1,86557⋅10-6 м2/с.

Точные значения приведены в таблице.

λ2 = 2,6 Вт/(мK), а2 = 1,85⋅10-6 м2/с.

Отсюда видно, что предлагаемая методика вполне удовлетворительно восстанавливает тепловые свойства исследуемого образца.

Способ определения теплопроводности и температуропроводности материалов, заключающийся в задании теплового потока в плоскости контакта первого эталонного образца с исследуемым образцом и измерении температуры во втором эталонном образце, контактирующем с эталонными образцами по плоскости, противоположной первому контрольному образцу, отличающийся тем, что задаваемый тепловой поток является постоянным, первое эталонное тело является изолятором тепла, а длина второго эталонного образца определяется по соотношению:

l 3=, где – длина образца, а – параметр Фурье;

далее находятся параметры , путем минимизации функции :

,

где – координата датчика температуры; – безразмерные значения замеренной температуры; n – число замеров; – безразмерная температура, в сечении , полученная по теоретической формуле:

,

где

зная , находятся искомые величины теплопроводности λ2 = и температуропроводности .



 

Похожие патенты:

Изобретение относится к теплофизическим измерениям. Область применения - определение теплофизических характеристик (ТФХ) материалов и изделий неразрушающим (безобразцовым) методом путем экспериментально-расчетного способа.

Изобретение относится к области исследования и анализа теплофизических свойств материалов и может быть использовано при определении коэффициента теплоотдачи и коэффициента теплопроводности теплоизоляционных покрытий на основе полых микросфер. Предложенный способ определения коэффициента теплоотдачи и коэффициента теплопроводности теплоизоляционных покрытий на основе полых микросфер методом замера фактических теплопотерь в стационарных условиях заключается в использовании установки, состоящей из участка трубопровода с нанесенным теплоизоляционным покрытием на основе полых микросфер, подключенного к нагревательному элементу, измерении температуры теплоносителя на входе участка tвх, на выходе участка tвых, температуры поверхности участка трубопровода τ, расходе воды через испытуемый участок Gвд, определении фактических тепловых потерь Q, коэффициента теплоотдачи αтеп и коэффициента теплопроводности λтеп по расчетным формулам.

Изобретение относится к области теплофизического приборостроения и предназначено для совокупного измерения теплопроводности двух разнородных твердых материалов. Согласно заявленному способу изготавливают цилиндрическую матрицу заданного профиля и объема с равномерно распределенными в ней одинаковыми сквозными отверстиями, в которых поочередно размещают образцы из исследуемых материалов.

Изобретение относится к методам исследования теплофизических свойств жидких металлов. Заявлен способ определения температуропроводности и теплопроводности металлических расплавов импульсным методом, при котором измерения проводят с использованием ячейки и держателя для ячейки, содержащей тигель в виде двух концентрических цилиндров различного диаметра и вставку с крышкой, позволяющей создать между дном тигля и вставкой плоский слой расплава внутри ячейки, который сохраняет плоскопараллельность при изменении температуры.

Изобретение относится к области испытательной техники, а именно к созданию установок для экспериментального определения тепловых характеристик порошково-вакуумной и экранно-вакуумной теплоизоляций, используемых для тепловой защиты строительных объектов, объектов военной, космической и криогенной техники, а также в других отраслях народного хозяйства.

Изобретение относится к области теплофизических измерений и предназначено для измерения теплопроводностей разнородных твердых тел, значения которых априорно неизвестны. Заявляемый способ ориентирован на метрологию и может быть использован в качестве теоретической основы для современного эталона единицы теплопроводности.

Предлагаемое изобретение относится к области измерений физических величин, в частности к теплофизическим измерениям свойств материалов, имеющих ярко выраженную температурную зависимость характеристик, таких как графит, карбиды и другие. Метод может найти применение при определении свойств композиционных материалов, которые используются в энергетике, авиационно-космической, химической и других отраслях техники.

Изобретение относится к технологиям создания композиционных материалов с заранее заданными теплофизическими свойствами, а именно к композитам в виде двухкомпонентной смеси, образованной путем механического смешения двух веществ. Изобретение предназначено для использования в приборостроении, авиационной и космической отраслях промышленности, в теплоэнергетике, а также в метрологии для создания стандартных образцов теплопроводности твердых тел.

Изобретение относится к измерительной технике в области теплофизических свойств веществ, материалов и изделий и может быть использовано при диагностике эффективности работы промышленных аппаратов, основанных на принципе псевдоожижения зернистого материала восходящим потоком газа, например обжиговых печей и сушильных аппаратов кипящего слоя.

Изобретение относится к измерительной технике в области теплофизических свойств веществ, материалов и изделий и ориентировано на использование при диагностике эффективности работы промышленных аппаратов, основанных на принципе псевдоожижения зернистого материала восходящим потоком газа, например обжиговых печей, сушильных аппаратов, теплогенераторов.

Изобретение относится к области теплофизических измерений и предназначено для измерения теплопроводности твердых тел. Технический результат: повышение точности измерения теплопроводности твердых тел. Сущность: используют два разнородных образца одинаковой формы с заданными толщинами и с одинаковым поперечным сечением. Приводят образцы в тепловой контакт по плоскости их поперечного сечения. В данной плоскости располагают равномерно распределенный по ней внутренний сток теплоты. На наружных плоскостях образцов, параллельных плоскости теплового контакта образцов, размещают однонаправленные и равномерно распределенные по плоскости внешние источники теплоты. Задают мощность внутреннего стока теплоты и стабилизируют ее во времени. Регулируют мощности внешних источников теплоты так, чтобы на образцах установились одинаковые заданные стационарные перепады температуры. Измеряют достигнутые мощности и стационарные равные друг другу перепады температуры на образцах. Затем при неизменной мощности внутреннего стока теплоты устанавливают равные заданные мощности внешних источников теплоты и измеряют достигнутые стационарные перепады температуры на образцах. По полученным данным расчетным путем находят искомые теплопроводности образцов. При этом предварительно находят оптимальное соотношение толщин образцов, которое определяют расчетным путем, исходя из заданных перепадов температуры и заданных мощностей внешних источников теплоты. 2 ил.
Наверх