Способ нанесения комбинированного жаростойкого покрытия на лопатки турбин гтд

Изобретение относится к области металлургии и может быть использовано в машиностроении для защиты деталей газотурбинных двигателей от газовой коррозии. Способ нанесения жаростойкого покрытия на лопатки турбин газотурбинного двигателя включает хромоалитирование, последующую термовакуумную обработку путем закалки, напыление слоя керамики ZrO2-8Y2O3 на входные кромки лопаток электронно-лучевым методом и отжиг. Хромоалитирование проводят при температуре 1190°С и времени выдержки 1 ч 20 мин. Слой керамики ZrO2-8Y2O3 напыляют толщиной 40-45 мкм. Перед отжигом проводят низкотемпературное хромоалитирование при температуре 1050-1080°С на толщину 10-15 мкм. Отжиг осуществляют при температуре 850°С в течение 32 ч с формированием структуры покрытия, состоящей из β-( ZrO2-8Y2O3)-β+γ' - фазы на входной кромке, переходящей в β+γ' - фазу на остальных участках лопатки. Обеспечивается повышение долговечности и надежности лопаток турбин, работающих в условиях переменных термомеханических нагрузок и высокотемпературного окисления. 5 ил., 1 табл., 1 пр.

 

Изобретение относится к способам получения комбинированных покрытий для защиты от окисления при высокой температуре металлов и сплавов и может быть использовано в машиностроении для защиты лопаток турбин авиационных ГТД от газовой коррозии.

Известны способы нанесения конденсационных, диффузионных и теплозащитных покрытий, применяемых для обеспечения работоспособности деталей машиностроения, полученных методом хромоалитирования в вакууме, электронно-лучевого напыления или плазменного осаждения на воздухе или в вакууме. Основными факторами, влияющими на долговечность теплозащитного покрытия, являются: жаростойкость металлического подслоя, структура и состав керамического слоя, соответствие коэффициентов термического расширения подслоя и керамики (см. Коломыцев П.Т. Газовая коррозия и прочность никелевых сплавов. М.: Металлургия, 1984 г. 215 с.).

Существенным недостатком диффузионных покрытий является их низкая стабильность и долговечность при высоких температурах. Теплозащитные покрытия характеризуются более низкой теплопроводностью, но растрескиваются и отслаиваются при теплосменах под действием термомеханических нагрузок (см. Абраимов Н.В., Елисеев Ю.С. Химико-термическая обработка жаропрочных сталей и сплавов. М.: Интермет Инжиниринг, 2001 г., 620 с).

Электронно-лучевые керамики на основе диоксида циркония имеют высокую кислородопроницаемость (см. Жук И.Н., Коломыцев П.Т., Семенов А.П. Исследование эффективности применения теплозащитных покрытий. Защитные покрытия. Научно-методические материалы. М. ВВИА им. Н.Е. Жуковского, 1994 г., стр. 106-111.).

Известен способ нанесения покрытия, включающий предварительную абразивно-жидкостную обработку, нанесение слоя жаростойкого покрытия из сплава на никелевой основе методом вакуум - плазменной технологии, нанесение второго слоя из сплава на основе алюминия, легированного никелем 13-16% и иттрием 1,5-1,8%, вакуумный отжиг и подготовку перед нанесением третьего керамического слоя из диоксида циркония стабилизированного 7-9% оксида иттрия (ZrO2 - 7Y2O3) и последующий вакуумный диффузионный и окислительный отжиг (патент на изобретение РФ №2078148). Покрытие, получаемое данным способом должно иметь толщину до 300 мкм, с целью получения достаточного теплоперепада по толщине покрытия, что приводит к снижению его служебных характеристик и не снижает кислородопроницаемости керамического слоя.

Известен способ нанесения покрытия на детали, работающих при высоких температурах, включающий предварительную обработку поверхности детали, нанесение первого слоя жаростойкого покрытия из сплава на основе никеля, нанесение второго слоя, содержащего алюминий. Затем проводят вакуумный диффузионный отжиг, подготовку поверхности под напыление третьего слоя покрытия из порошка ZrO2 - Yb2O3 или смеси порошков ZrO2 - Yb2O3 и ZrO2 - Y2O3 (патент на изобретение РФ №2280095, опубл. 20.07.2006 г., бюл. №20).

Для нанесения покрытия используют порошок ZrO2 + (2-5)%Y2O3 + (3-4)%YbO3 (патент Японии 61-41757). Частичная замена в порошковой смеси иттрия на иттербий не повышает долговечность покрытия, а лишь снижает его стоимость.

Известен способ получения эрозионностойких теплозащитных покрытий на основе композиции ZrO2+NiCr (патент на изобретение РФ №2283363, опубл. 10.09.2006 г., бюл. №25). В данном способе использование оксида кальция в качестве стабилизирующей добавки приводит к снижению теплостойкости композиции в целом, а введение порошка нихрома в порошки диоксида циркония повышают лишь эрозионную стойкость покрытия.

Известен способ нанесения комплексного покрытия на детали из сплавов на основе никеля включающий хромоалитирование в порошковой смеси, термовакуумную обработку с последующим силицированием для окончательного формирования покрытия (патент на изобретение РФ №2220774, опубл. 27.03.2008 г., бюл. №9). Данное покрытие имеет недостаточную жаростойкость и наиболее эффективно для защиты лопаток турбин ГТД при сульфидной коррозии.

Известны способы нанесения комбинированного теплозащитного покрытия на лопатки турбин ГТД и детали из жаропрочных сплавов включающие хромоалитирование в порошковой смеси, последующую термовакуумную обработку путем закалки, напыление слоя керамики ZrO2 - 8Y2O3 на детали из жаропрочных сплавов или лопатки турбин ГТД электронно-лучевым методом и последующего напыления электроннолучевым методом слоя толщиной 10-15 мкм [ZrO2-11Y2O3 - (12-25) Si] (патент на изобретение РФ №2402639, опубл. 27.10.2010 г., бюл. №30) или слоя [ZrO2-11Y2O3 - 40 Al2O3] (патент на изобретение РФ №2349679, опубл. 20.03.2009 г., бюл. №8) или слоя [ZrO2-11Y2O3 - (20-25) Al2O3-(10-12)Si-(5-8)Hf] (патент на изобретение РФ №2469129, опубл. 10.12.2012 г., бюл. №34) и диффузионного отжига для окончательного формирования структуры покрытия. Данные способы повышают долговечность лопаток турбин авиационных ГТД или деталей из жаропрочных сплавов за счет снижения пористости и кислородопроницаемости керамической составляющей покрытия и стойкость к сульфидной коррозии за счет вводимых в покрытие элементов.

Наиболее близким техническим решением является способ нанесения комбинированного жаростойкого покрытия на лопатки турбин, включающий хромоалитирование в порошковой смеси, термовакуумную обработку, после чего проводят электронно-лучевое напыление на входные кромки лопаток слоя керамики ZrO2 - 8Y2O3 и последующего отжига для окончательного формирования покрытия с переходом от структуры фазы на входной кромке с переходом в - фазу на остальных участках лопаток с концентрацией алюминия (16-18) % (см.патент на изобретение РФ №2272089, кл. С23С 28/00, опубл. 20.03.2006 г., бюл. №8), принятый за прототип.

Покрытие используется для защиты наружной поверхности рабочих лопаток ГТД от высокотемпературного окисления, работающих при более высоких температурах (1000-1180)°С.

Покрытие имеет состав, толщину и структуру а, следовательно, и свойства, соответствующие условиям работы, профилю защищаемой детали.

Покрытие, получаемое таким образом, обладает недостаточной долговечностью при температурах (1150-1200)°С.

Это объясняется тем, что керамическая составляющая комбинированного покрытия, нанесенная электронно-лучевым методом, обладая высокой термостойкостью, имеет высокую кислородопроницаемость, обусловленную ее структурой столбчатого строения. При работе двигателя к сокращению долговечности покрытия приводят процессы образования солевых отложений на поверхности керамического слоя, заполнение отложениями солей пор и микротрещин, развитие химических реакций в структуре керамики. Эти реакции оказывают влияние на дестабилизацию диоксида циркония и вызывают образование неблагоприятного напряженного состояния в системе вследствие изменения фазового состава ZrO2, изменение пористости и проницаемости покрытия.

Структура - фаз на остальных участках лопаток - спинке, корыте, выходной кромке с концентрацией алюминия (16-18) % обеспечивает термическую стойкость, но недостаточна долговечна при температурах (1150-1200)°С при интенсивных процессах окисления, протекающих на границе покрытия с окислительной средой и диффузионных процессах в системе покрытие - сплав.

Технической задачей изобретения является увеличение рабочих температур лопаток турбин авиационных ГТД и повышение их долговечности за счет применения комбинированного жаростойкого покрытия.

Технический результат изобретения заключается в повышении долговечности и надежности лопаток турбин авиационных ГТД, работающих в условиях переменных термомеханических нагрузок и высокотемпературного окисления за счет нанесения комбинированного жаростойкого покрытия с изменяющимся в соответствии с условиями работы, составом и структурой по профилю защищаемой детали и пониженной кислородопроницаемостью керамической составляющей покрытия.

Сущность изобретения заключается в том, что в способе нанесения комбинированного жаростойкого покрытия на лопатки турбин ГТД, включающем хромоалитирование в порошковой смеси, последующую термовакуумную обработку путем закалки, напыление слоя керамики ZrO2-8Y2O3 на входные кромки лопаток электронно-лучевым методом и отжиг для окончательного формирования структуры покрытия фазы на входных кромках и переходящей в - фазу на остальных участках лопатки с концентрацией алюминия (16-18)%, перед отжигом проводят низкотемпературное хромоалитирование в порошковой смеси на толщину 10-15 мкм, а в результате отжига формируется окончательная структура покрытия состоящей из - фазы на входной кромке с концентрацией алюминия (24-25)%, переходящей в - фазу с концентрацией алюминия (18-20)% на остальных участках лопатки.

Технический результат достигается за счет нового действия в нанесении комбинированного жаростойкого покрытия на лопатки турбин ГТД, а именно: низкотемпературного хромоалитирования в порошковой смеси на толщину 10-15 мкм и формирования в результате отжига окончательной структуры покрытия состоящей из фазы на входной кромке с концентрацией алюминия (24-25)%, переходящей в - фазу с концентрацией алюминия (18-20)% на остальных участках лопатки.

Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ существенно отличается от известного тем, что на покрытие состоящей из - фазы на входной кромке переходящей в - фазу на остальных участках лопатки

дополнительно наносят слой покрытия хромоалитированием в порошковой смеси повышая жаростойкость покрытия и снижая кислородопроницаемость керамической составляющей покрытия (таблица 1). Последующий диффузионный отжиг формирует окончательный состав, структуру и свойства комбинированного теплозащитного покрытия.

На фиг. 1 приведена микроструктура поверхности керамического слоя (вид сбоку при 15° от горизонтали, увеличение 200).

На фиг. 2 приведена микроструктура хромоалитированного слоя - фазы.

На фиг. 3 приведена микроструктура поверхности керамического слоя после низкотемпературного хромоалитирования (увеличение 2000).

На фиг. 4 приведена зависимость числа циклов испытаний до появления первой трещины в покрытии от состава покрытия (цикл 1100↔20°С).

На фиг. 5 приведена зависимость влияния состава слоя керамики на пластичность покрытия.

Пример конкретного выполнения (оптимальный) Способ нанесения комбинированного жаростойкого покрытия реализован следующим способом. Покрытие наносят на лопатку турбины, изготовленную из никелевого сплава. Хромоалитирование в вакууме в порошковой смеси вели при температуре процесса, равной 1190°С, продолжительностью процесса 1 ч 20 мин. Толщина получаемого покрытия 50-60 мкм. Порошковая смесь содержит 13% алюминия, 37% хрома, 50% окиси алюминия. Затем лопатки турбины с покрытием подвергались термовакуумной обработке (ТВО) путем закалки - температура 1240°С, продолжительностью 1 ч 45 мин.

На входные кромки лопаток на промышленной установке УЭ-175 электронно-лучевым методом дополнительно наносили слой системы ZrO2-8Y2O3 столбчатой структуры. Толщина керамического слоя составляет 40-45 мкм. Повторное хромоалитирование лопаток турбин вели в порошковой смеси содержащей 13% алюминия, 37% хрома, 50% окиси алюминия при температуре 1050-1080°С на толщину 10-15 мкм. В процессе последующего диффузионного отжига при температуре 850°С и продолжительности 32 часа формируется окончательный состав покрытия состоящей из β-(ZrO2-8Y2O3) - фазы на входной кромке с концентрацией алюминия (24-25)%, переходящей в - фазу с концентрацией алюминия (18-20)% на остальных участках лопатки.

Данные по толщинам слоев покрытия определяли на оптическом микроскопе «Neophot-21». Химический состав определялся микрорентгеноспектральным способом на электронном микроскопе «Stereoscan -S-600» с микроанализатором «Link». Состояние покрытий при испытаниях контролировали ЛЮМ-1-ОВ методом.

Использование способа наиболее эффективно для защиты от высокотемпературного окисления рабочих лопаток турбин в связи с их высокой стоимостью и решающим влиянием их ресурса на ресурс ГТД в целом.

Способ нанесения жаростойкого покрытия на лопатки турбин газотурбинного двигателя, включающий хромоалитирование, последующую термовакуумную обработку путем закалки, напыление слоя керамики ZrO2-8Y2O3 на входные кромки лопаток электронно-лучевым методом и отжиг, отличающийся тем, что хромоалитирование проводят при температуре 1190°С и времени выдержки 1 ч 20 мин, слой керамики ZrO2-8Y2O3 напыляют толщиной 40-45 мкм, перед отжигом проводят низкотемпературное хромоалитирование при температуре 1050-1080°С на толщину 10-15 мкм, а отжиг осуществляют при температуре 850°С в течение 32 ч с формированием структуры покрытия, состоящей из β-( ZrO2-8Y2O3)-β+γ' - фазы на входной кромке, переходящей в β+γ' - фазу на остальных участках лопатки.



 

Похожие патенты:
Изобретение относится к водной не содержащей хрома композиции покрытия, способу по меньшей мере частичного нанесения покрытия металлической подложки грунтовочным слоем, способу по меньшей мере частичного нанесения покрытия металлической подложки многослойным покрытием, применению композиции покрытия для защиты от коррозии металлических подложек и металлической подложке, покрытой по меньшей мере частично композицией покрытия.

Изобретение относится к армирующему волокну, стойкому к воздействию окружающей среды и пригодному для композиционного материала. Описано армирующее волокно, которое имеет покрытие, стойкое к воздействию окружающей среды, и пригодно для композиционного материала, армированного волокнами, содержащее: армирующее волокно; слой покрытия, покрывающий армирующее волокно и включающий в себя силикат редкоземельного элемента; отслаивающийся слой, размещенный на поверхности раздела между указанным слоем покрытия и армирующим волокном; и слой дополняющего покрытия, покрывающий армирующее волокно, отслаивающийся слой и указанный слой покрытия, при этом слой дополняющего покрытия включает в себя карбид кремния, отслаивающийся слой включает в себя силикат редкоземельного элемента, причем силикат редкоземельного элемента в слое покрытия и отслаивающемся слое представляет собой силикат иттербия, и при этом армирующее волокно включает в себя карбид кремния.
Изобретение относится к стальной подложке с покрытием, нанесенным в результате погружения в расплав, и способу изготовления данной стальной подложки с покрытием. Стальная подложка с покрытием имеет покрытие в виде слоя Sn, непосредственно поверх которого нанесено покрытие на основе цинка или алюминия, при этом стальная подложка имеет следующий состав, мас.%: 0,10≤С≤0,4, 1,2≤Mn≤6,0, 0,3≤Si≤2,5, Al≤2,0 и необязательно один или несколько элементов, таких как P<0,1, Nb≤0,5, B≤0,005, Cr≤1,0, Mo≤0,50, Ni≤1,0, Ti≤0,5, остальное - железо и неизбежные примеси.

Изобретение относится к области авиадвигателестроения, в частности к конструкции деталей и сборочных единиц (ДСЕ) соплового аппарата турбины высокого давления (СА ТВД) газотурбинного двигателя, преимущественно для высокоманевренных самолетов. Деталь сборочной единицы соплового аппарата турбины высокого давления изготовлена из жаропрочного и жаростойкого сплава на основе никеля с теплозащитным покрытием, содержащим металлический подслой, керамический подслой и верхний керамический слой, при этом металлический подслой толщиной от 35 до 130 мкм выполнен плазменным напылением порошкового сплава на основе никеля, содержащего 18-25% кобальта, 13-22% хрома, 10-15% алюминия и 0,1-0,9 иттрия, причем объемная пористость и объемное содержание включений оксидов в слое в сумме составляют не более 7%, керамический подслой толщиной от 120 до 220 мкм выполнен плазменным напылением порошкового материала на основе диоксида циркония, содержащего 7,5-11,5% оксида диспрозия, при этом пористость слоя составляет от 5 до 20%, а верхний керамический слой толщиной от 30 до 130 мкм выполнен плазменным напылением порошкового материала на основе диоксида циркония, содержащего 45-65% оксида гадолиния, при этом пористость слоя составляет от 5 до 20%.

Группа изобретений относится к способам защиты детали из монокристаллического, не содержащего гафний суперсплава на основе никеля от коррозии и окисления. Осуществляют изготовление детали из указанного сплава, нанесение на деталь первого слоя из гафния, подслоя из сплава с содержанием по меньшей мере 10 атомных % алюминия и второго слоя из гафния, одновременно или поочерёдно для образования смешанного слоя.

Группа изобретений относится к теплоизоляции деталей в высокотемпературных условиях. Деталь для газотурбинного двигателя, имеющая, по меньшей мере, один первый слой теплового барьера, содержащий керамический материал и первые керамические волокна, диспергированные в первом слое.

Изобретение относится к способам плазмохимической обработки стальных изделий сложных форм и может быть использовано для защиты металлических материалов и изделий, которые могут подвергаться воздействию твердых частиц в потоках газов или жидкости, а также находящихся в химически агрессивных средах. Способ получения защитного покрытия путем формирования многослойного композитного покрытия на металлическом изделии включает последовательное нанесение нижнего адгезионного подслоя из порошка никель-алюминий плазменным методом, нанесение слоя грунта на основе органической полимерной композиции и верхнего защитного слоя, при этом нижний адгезионный подслой покрытия толщиной 40-60 мкм наносят методом плазменного напыления при дозвуковом режиме из смеси металлических порошков системы никель-алюминий-цинк, содержащей, мас.

Группа изобретений относится к способу изготовления детали с подложкой из монокристаллического суперсплава на основе никеля с многослойным покрытием и глиноземным слоем, а также к упомянутой детали. Указанный способ включает изготовление подложки из монокристаллического суперсплава на основе никеля, формирование на подложке многослойного покрытия, содержащего по меньшей мере один слой первого типа, содержащий алюминий и платину, по меньшей мере один слой второго типа, содержащий алюминий, кремний и платину, и слой третьего типа, содержащий никель, алюминий, кремний и платину.

Изобретение относится к области химической поверхностной обработки. Способ включает последовательное нанесение на поверхность детали двух слоев покрытия, каждый из которых образуют нанесением суспензии алюминиевого порошка в растворе неорганического связующего методом окрашивания с последующим термоотверждением нанесенного слоя покрытия и механической обработкой детали с нанесенным слоем покрытия.

Группа изобретений относится к металло-пластмассовому композиционному материалу и к способу производства такого композиционного материала. Металло-пластмассовый композиционный материал содержит металлический компонент, который физически связан с нанесенным на него термопластичным полимерным материалом.

Изобретение относится к области металлургии, в частности к химико-термической обработке металлов и сплавов в циркулирующей газовой среде, а именно к способу одностадийного диффузионного хромоалитирования деталей из жаропрочных сплавов, применяемых в двигателестроении и в других отраслях народного хозяйства.
Наверх